
1

1

Introduction to XML

��������	
����
����

“Trying to wrap your brain around
XML is sort of like trying to put
an octopus in a bottle. Every
time you think you have it under
control, a new tentacle shows
up. XML has many tentacles,
reaching out in all directions. “

(Dick Baldwin)

���

������
�� � � 	 �

 � �
 ��� � � � 	
� � �
��� � � 	 �

�� � � 	 �

 � �
 ��� � � � 	
� � �

��� � � 	 �

�������

2

2

�����	���

eXtensible Markup Language, or XML for short, is a
new technology for web applications.

XML is a World Wide Web Consortium standard that lets you
create your own tags.

XML is not a single technology, but a group of related
technologies that continually adds new members

XML is a lingua-franca that
simplifies business-to-business transactions on the web.

Vendor independence
in the data-formatting context

"Other successful Internet technologies let people run
their systems without having to take into account

another company's own computer systems, notably:
TCP/IP for networking,
Java for programming,

Web browsers for content delivery.
XML fills the data formatting piece of the puzzle.“

"These technologies do not create dependencies. It
means you can build solutions that are completely
agnostic about the platforms and software that you

use.“
���������	
������
���
�����������
����
����

3

3

� Computer people are the
world's worst at inventing
new jargon.

� XML people seem to be
the worst of the worst in
this regard.

(Dick Baldwin)

������
���

DOM
SAX

JAXP
JDOM

XQL
XML-RPC

XSP

XML
DTD
XSL

XSLT

XML Schema
XPath
XLink

XPointer

Related stuff
SGML XHTML CSS

Semantic Web
RDF (Resource Description Framework), OWL,

Topic Maps
Web Services

SOAP, UDDI, WSDL, XML-RPC
Configuration files

XML applications

4

4

What is SGML
SGML is an ISO standard (ISO 8879:1986) which
provides a formal notation for the definition of
generalized markup languages. SGML is not a language
in itself. Rather, it is a metalanguage that is used to
define other languages.

XML roots: SGML

An SGML document is really the combination of three parts. Let's
refer to the parts as files (but they don't have to be separate
physical files).

One file contains the content of the document (words, pictures,
etc.). This is the part that the author wants to expose to the
client.

A second file is the DTD that defines the accepted syntax.

A third file is a stylesheet that establishes how the content that
conforms to the DTD is to be rendered on the output
device. This is how the author wants the material to be
presented to the client.

SGML: the three parts

5

5

HTML implements some of the concepts derived from SGML but in
effect the DTD and the Style Sheet are hard-coded into the browser
software.

Because each browser manufacturer has some flexibility in
implementing the intended style, the same document will
sometimes look different when rendered with two different
browsers. This is a (wanted) shortcoming of HTML.

Web page designers are constantly faced with the problem of
designing workarounds to compensate for the deficiencies in
some versions of some browsers being used to view the page.

HTML versus SGML

What the world needs now is...
What the Web community needs is an approach where a
standard browser is simply a rendering engine that validates a
document according to a given DTD and renders it according to
a given stylesheet.

A package deal
The combination of the document, the DTD, and the stylesheet
would constitute a package delivered by a server to the
browser. The author of the document would provide the DTD
and the stylesheet in addition to the data to be rendered. Then
the author could be more confident that it would be rendered
properly, especially for complex data.

SGML - HTML

6

6

The two extremes
With HTML, the DTD and the stylesheet are essentially
hard-coded into the browser.
With SGML, the processor requires both a DTD and a
stylesheet.

XML, the middle ground
With XML, the DTD is optional but the stylesheet (or
some processing mechanism that substitutes for a
stylesheet) is required.

SGML – HTML - XML

What is an element?
An element is a sequence of characters that begins with a start tag

and ends with an end tag and includes everything in between.

�� � � 	 � � � �� � � � �� �
 � �
 ��� � � � 	
� � ���� � � 	 �

What is the content?
The characters in between the tags (rendered in green in this
presentation) constitute the CONTENT.

XML: element, content, and attribute

7

7

An element may include optional attributes
The start tag may contain optional attributes. In this example, a

single attribute provides the number value for the chapter.

�� � � 	 � � � �� � � � �� �
 � �
 ��� � � � 	
� � ���� � � 	 �

The characters rendered in blue in the above element constitute an
attribute.

The term attribute is a commonly used term in computer science and
usually has about the same meaning, regardless of whether the
discussion revolves around XML, Java programming, or database
management: Attributes belong to things, or things have
attributes.

XML: element, content, and attribute

An XML document must have a root tag.

An XML document is an information unit that can be seen in
two ways:

As a linear sequence of characters that contain characters
data and markup.

As an abstract data structure that is a tree of nodes.

XML: tree structure

8

8

An XML document can contain:
Processing Instructions (PI): <? … ?>
Comments <!-- … -->

When a XML document is analyzed, character data within
comments or PIs are ignored.

The content of comments is ignored, the content of PIs is
passed on to applications.

XML: additional elements

An XML document can contain sections used to escape character strings
that may contain elements that you do not want to be examined by your
XML engine, e.g. special chars (<) or tags:

CDATA sections <![CDATA[…]]>

When a XML document is analyzed, character data within a CDATA
section are not parsed, by they remain as part of the element content.

<java>
<![CDATA[

if (arr[indexArr[4]]>3) System.out.println(“<HTML>”);
]]>
</java>

XML: CDATA sections

Avoid having]]> in your
CDATA section!

Note: the element content that are
going to be parsed are called

PCDATA

9

9

All XML documents must be well-formed
XML documents need not be valid, but all XML documents must be well-

formed.

(HTML documents are not required to be well-formed)

There are several requirements for an XML document to be well-formed.

Well formed documents

Caution: XML is case sensitive

Start and end tags are required
To be well-formed, all elements that can contain character data must have

both start and end tags.
(Empty elements have a different requirement: see later.)
For purposes of this explanation, let's just say that the content that we

discussed earlier comprises character data.

Elements must nest properly
If one element contains another element, the entire second element must

be defined inside the start and end tags of the first element.

Well formed documents

10

10

Dealing with empty elements
We can deal with empty elements by writing them in either of the following

two ways:

�������������

�������

You will recognize the first format as simply writing a start tag followed
immediately by an end tag with nothing in between.

The second format is preferable

Empty element can contain attributes
Note that an empty element can contain one or more attributes inside the

start tag:

������� �
� �� � �� � �� �� �	 � �� � � � � � � � ! � ���

Well formed documents

No markup characters are allowed
For a document to be well-formed, it must not have some

characters (entities) in the text data: ������"�# .
If you need for your text to include the ��character you can

represent it using # �
$ or < or < instead.

All attribute values must be in quotes (apostrophes or double
quotes).

You can surround the value with apostrophes (single quotes) if the
attribute value contains a double quote. An attribute value that is
surrounded by double quotes can contain apostrophes.

Well formed documents

11

11

XML declaration (optional, but if present MUST be the first
element)
<?xml version=‘1.0’ encoding=‘utf-8’>

Optional DTD declaration
Optional comments and Processing Instructions
The root element’s start tag
All other elements, comments and PIs
The root element closing tag

Logical structure of an XML document

How do you avoid tag conflicts?

Since you can define your own tags, if you reuse XML files
from other authors you might find tag conflicts.

These can be avoided by declaring a namespace as an
attribute of the root element:

<xsl:stylesheet version =“1.0”
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>

XML: namespaces

12

12

A parser, in this context, is a software tool that preprocesses an
XML document in some fashion, handing the results over to an
application program.

The primary purpose of the parser is to do most of the hard work up
front and to provide the application program with the XML
information in a form that is easier to work with.

What is a parser?

������	��	���������������
	�

XML file

Parser Data
structure

Error if not well-formed

13

13

������	��	��������������
	�

XML file

Parser Data
structure

SAX API

Your program

� Tree-based API
A tree-based API compiles an XML document into an internal tree
structure. This makes it possible for an application program to navigate the
tree to achieve its objective. The Document Object Model (DOM) working
group at the W3C is developing a standard tree-based API for XML.

� Event-based API
An event-based API reports parsing events (such as the start and end of
elements) to the application using callbacks. The application implements and
registers event handlers for the different events. Code in the event handlers
is designed to achieve the objective of the application. The process is similar
(but not identical) to creating and registering event listeners in the Java
Delegation Event Model.

Tree-based vs Event-based API

14

14

SAX is a set of interface definitions
For the most part, SAX is a set of interface definitions. They specify one
of the ways that application programs can interact with XML documents.

(There are other ways for programs to interact with XML documents as well.
Prominent among them is the Document Object Model, or DOM)

SAX is a standard interface for event-based XML parsing, developed
collaboratively by the members of the XML-DEV mailing list. SAX 1.0
was released on Monday 11 May 1998, and is free for both commercial
and noncommercial use.

The current version is SAX 2.0.1 (released on 29-January 2002)

See http://www.saxproject.org/

what is SAX?

Apache Xerces http://xml.apache.org
IBM XMLJ4 http://alphaworks.ibm.com/tech/xmlj4
James Clark’s XP http://www.jclark.com/xml/xp
OpenXML http://www.openxml.org
Oracle XML Parser http://technet.oracle.com/tech/xml
Sun Microsystem Project X http://java.sun.com/products/xml
Tim Bray’s Lark and Larval http://www.textuality.com/Lark

����������������
	�

15

15

Introduction to XML

���

A DTD is usually a file (or several files to be used together) which
contains a formal definition of a particular type of document.
This sets out what names can be used for elements, where they
may occur, and how they all fit together.

It's a formal language which lets processors automatically parse a
document and identify where every element comes and how they
relate to each other, so that stylesheets, navigators, browsers,
search engines, databases, printing routines, and other
applications can be used.

A DTD contain metadata relative to a collection of XML docs.

What is a DTD?

16

16

a valid XML document is one that conforms to an existing DTD in
every respect.

For example...
Unless the DTD allows an element with the name "color", an XML

document containing an element with that name is not valid
according to that DTD (but it might be valid according to some
other DTD).

An invalid XML document can be
a perfectly good and useful XML document.

Valid documents

Validity is not a requirement of XML

Because XML does not require a DTD, in general, an XML processor
cannot require validation of the document.

Many very useful XML documents are not valid, simply because
they were not constructed according to an existing DTD.

To make a long story short,
validation against a DTD can often be very useful, but is not

required.

Valid documents

17

17

���	�
������������������

XML file

DTD file

Validating
Parser

Validation

���	�
�������������������

XML file

XML Schema

ValidationValidating
Parser

DTD is not XML

DTD is not powerful enough

(e.g. at least 3, no more than 5)

18

18

A DTD can be external or internal to a document.

<!DOCTYPE Report>
<!DOCTYPE Report SYSTEM “Report.dtd”>
<!DOCTYPE Report PUBLIC “Report.dtd”>

Where are the DTDs?

Internal DTD

External DTD

URL

Broadly and publicly available

<!ELEMENT name content-model>
<!ELEMENT book (preface?,chapter+,index)>
<!ELEMENT preface(paragraph+)>
<!ELEMENT paragraph (#PCDATA)>

<!ELEMENT chapter (title,paragraph+,reference*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT reference (#PCDATA|URL)>
<!ELEMENT URL (#PCDATA)>

<!ELEMENT index(number,title,page_number)>
<!ELEMENT number(#PCDATA)>
<!ELEMENT page_number(#PCDATA)>

DTD Markup: ELEMENT

? Zero or one
+ One or more
* Zero or more
, sequence
| or (not xor!)

19

19

<!ATTLIST element-name attribute-name type default>
<!ELEMENT Product (#PCDATA)>
<!ATTLIST Product

Name CDATA #IMPLIED
Rev CDATA #FIXED “1.0”
Code CDATA #REQUIRED
Pid ID #REQUIRED
Series IDREF
Status (InProduction|Obsolete)

“InProduction”
>

DTD Markup: ATTLIST

TYPES:
CDATA character data
ID Unique key
IDREF Foreign Key
(…|…) Enumeration

DEFAULT:
#IMPLIED optional, no default
#FIXED optional, default supplied.

If present must match default
#REQUIRED must be provided

Entities are a sort of macro
General Entity
<!ENTITY author “Marco Ronchetti, Universita’ di Trento”>
External Parsed Entity
<!ENTITY content SYSTEM “content.xml”>
<Tag>&content &author</Tag>

Parameter Entity
<!ENTITY % AI “CDATA #IMPLIED”>
<!ATTLIST Product Name %AI>

DTD Markup: ENTITY

Internal at the DTD

External to the DTD

20

20

The main problem of DTD’s...

They are not written in XML!

Solution:

Another XML-based standard: XML Schema

For more info see:
�������������������
�� ��
!�

Introduction to XML

����� ������������

21

21

�
��	��
�������

XML file

XSL file

XSLT
Processor XML file

XSL is complex (much more complex than
XML). Designing an XSL stylesheet, to be used by a
rendering engine to properly render an XML document,
can be a daunting task.

Microsoft has developed an XSL debugger, and has
made it freely available for downloading.

XSL is complex

22

22

Apache Xalan http://xml.apache.org
James Clark’s XT http://www.jclark.com/xml/xt.html
Lotus XSL Processor http://alphaworks.ibm.com/tech/LotusXSL
Oracle XSL Processor http://technet.oracle.com/tech/xml
Keith Visco’s XSL:P http://www.clc-marketing.com/xslp
Michael Kay’s SAXON http://users.iclway.co.uk/mhkay/saxon

������������������
�!�		�
	

�
��	��
�������

XSL file 1 XSLT
Processor

WML fileXSL file 2

HTML file

XML file

Contenuto

Forma Documento

23

23

�
��	��
�������

XSLT
Processor

XSL file

HTML file 1

XML file 2

Contenuto

Forma

DocumentoXML file 1

HTML file 2

Hands on XSL

�������	
 ���
����

24

24

<?xml version="1.0"?>
<?xml-stylesheet href="hello.xsl" type="text/xsl"?>

<!-- Here is a sample XML file -->
<page>

<title>Test Page</title>
<content>

<paragraph>What you see is what you get!</paragraph>
</content>

</page>

HANDS ON! - Esempio1 XML

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="page">

<html>
<head>

<title>
<xsl:value-of select="title"/>

</title>
</head>
<body bgcolor="#ffffff">

<xsl:apply-templates/>
</body>

</html>
</xsl:template>

HANDS ON! - Esempio1 XSL a

25

25

<xsl:template match="paragraph">
<p align="center">

<i>
<xsl:apply-templates/>

</i>
</p>

</xsl:template>
</xsl:stylesheet>

HANDS ON! - Esempio1 XSL b

Let us use the Apache XSLT processor: Xalan.

1) Get Xalan from xml.apache.org/xalan/index.html

2)Set CLASSPATH=%CLASSPATH%;…/xalan.jar; …/xerces.jar

3) java ���������
�"�����"��������
��
–IN testPage.xml –XSL testPage.xsl –O out.html

HANDS ON! - Esempio1 Xalan

26

26

<html>
<head>

<title>
Test Page

</title>
</head>
<body bgcolor="#ffffff">

<p align="center">
<i>

What you see is what you get!
</i>

</p>
</body>

</html>

HANDS ON! - Esempio1 Output HTML

� The process starts by traversing the document tree, attempting
to find a single matching rule for each visited node.

� Once the rule is found, the body of the rule is istantiated

� Further processing is specified with the <xsl:apply-templates>.
The nodes to process are specified in the match attribute. If the
attribute is omitted, it continues with the next element that has a
matching template.

The process

27

27

<template match=“/|*”>
<apply-templates/>

</template>

<template match=“text()”>
<value-of select=“.”/>

</template>

Implicit rules

Publishing frameworks

28

28

����"������#������
��

Client Client DocumentDocument
Server Server

HTTPHTTP
Server Server

XSLTXSLT
Processor Processor

HTTP request

StylesheetStylesheet
Server Server

Get document

XML document Get SS

XSL stylesheet

XML + XSL

HTML document
HTML

document

Apache Cocoon http://xml.apache.org
Enhydra Application Server http://www.enhydra.org/
Bluestone XML Server http://www.bluestone.com/xml
SAXON http://users.iclway.co.uk/mhkay/saxon

�$���	�����
���%�
�	

