
EJB Patterns

Architectural Patterns

What is a “pattern”?

“The best solution to a recurring problem”

Recurring software design problems
identified and catalogued in a standard
way ao as to be accessibile to everybody
and usable in any programming language.

What is a J2EE pattern?

• A J2EE design pattern is essentially any pattern
that utilizes J2EE technology to solve a recurring
problem.

• Patterns are typically classified by logical tier:
– presentation tier
– business tier
– integration (EIS) tier

• Clear separation of design concerns

• Easier maintenance
– decreased code duplication
– better isolation and less interdependence

• Easy to add new client types or
adjust to different client
requirements

• A common approach in J2EE
– Model = EJBs
– View = JSPs
– Controller = servlet

Architecture decisions
Use MVC architecture

DAO Pattern
Data Access Object

Data Transfer Objects (DTO)
also known as Value Objectsor VO,

 used to transfer data between software application
subsystems.

DTO's are often used in conjunction with DAOs to
retrieve data from a database.

 DTOs do not have any behaviour except for
storage and retrieval of its own data (mutators
and accessor).

Overall view

DTODTOAssembler
creates

Facade
SessionBean

uses manages

Business
Delegate

interact (exchanging a DTO)ServiceLocator

Search the
other beans

Sarch the facade

In the simplest case it's a DAO

SessionBean

Entity

accesses

The session facade Pattern

• Uses a session bean to encapsulate the
complexity of interactions between the business
objects participating in a workflow.

• Manages the business objects,
and provides a uniform
coarse-grained service

 access layer to clients

Business Delegate Pattern
• Use a Business Delegate to

– Reduce coupling between presentation-tier and business service
components

– Hide the underlying implementation details of the business
service components

– Cache references to business services components
– Cache data
– Translate low level exceptions to application level exceptions
– Transparently retry failed transactions
– Can create dummy data for clients

Business Delegate is a plain java class

Mapping Session Facade on use
cases

Singleton Pattern

public class MySingleton {
private static MySingleton _instance;

private MySingleton() {
// construct object . . .
}

// For lazy initialization
public static synchronized MySingleton getInstance() {
if (_instance==null) {
_instance = new MySingleton();
}
return _instance;
}
// Remainder of class definition . . .
}

Home Factory Example
public final class MyBeanHomeFactory {
 private static MyBeanHomeFactory factory = null;
 private static MyBeanHome handle = null;
 public final MyBeanHome getHome() {
 return handle; }
 public static MyBeanHomeFactory getSingleton() {
 if (factory == null) {factory = new CoursesEJB(); }
 return factory ;
 }
 private MyBeanHomeFactory () {
 try {
 Object result = DirectoryAccess.lookup(" MyBean");
 MyBeanHome handle = (MyBeanHome)
 PortableRemoteObject.narrow(result, MyBeanHome.class);
 }
 catch (RemoteException ex1) { ex1.printStackTrace(); }
 catch (CreateException ex1) { ex1.printStackTrace(); }
 }
}

MyBeanHome mbh=mBeanHomeFactory.getSingleton().getHome();

The Home Factory Pattern
• Insulates clients from the naming service caches

lookup for better performance
• Can be used for EJB home and JNDI lookups
• Uses the singleton pattern to ensure only one

instance of the factory class is created

Service Locator Pattern

…to acquire an EJB Home object for the first time, Service Locator first
creates a JNDI initial context object and performs a lookup on the
EJB Home object.

But not only for EJB Home also for other kinds of services…an
enhanced Service Locator can have a verifier mechanism that
checks the cached services' validity by monitoring them during a
cycle of a specified frequency.

Service Locator Pattern

• Use a Service Locator to
– Abstract naming service usage
– Shield complexity of service lookup and creation
– Promote reuse
– Enable optimize service lookup and creation functions

• Usually called within Business Delegate or
Session Facade object

Service Locator Pattern
package ...;
import ...;

public class ServiceLocator {
 private static ServiceLocator serviceLocator;
 private static Context context;

 protected ServiceLocator() throws Exception {
 context = getInitialContext();
 }

 public static synchronized ServiceLocator getInstance() throws Exception {
 if (serviceLocator == null) {
 serviceLocator = new ServiceLocator();
 }
 return serviceLocator;
 }

Service Locator Pattern

 private Context getInitialContext() throws NamingException {
 Hashtable environment = new Hashtable();
 environment.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jnp.interfaces.NamingContextFactory");
 environment.put(Context.URL_PKG_PREFIXES,

"org.jboss.naming:org.jnp.interfaces");
 environment.put(Context.PROVIDER_URL, "jnp://localhost:1099");
 return new InitialContext(environment);
 }
}

Service Locator Pattern
public static EJBHome getEjbHome(String ejbName, Class ejbClass)

 throws Exception {
 Object object = context.lookup(ejbName);
 EJBHome ejbHome = null;
 ejbHome = (EJBHome) PortableRemoteObject.narrow(object,ejbClass);
 if (ejbHome == null) { throw new Exception(

"Could not get home for " + ejbName);
 }
 return ejbHome;
 }
}

public static EJBLocalHome getEjbLocalHome(String ejbName)
throws Exception {
 ...
 }

Using the Service Locator

private void findEmployeeHome() throws EJBException {
 final String ENTITY_NAME = "java:comp/env/ejb/employee";
 if (employeeHome == null) {
 try {
 ServiceLocator locator = ServiceLocator.getInstance();
 employeeHome = (EmployeeHome)
 locator.getEjbLocalHome(ENTITY_NAME);
 }
 catch (Exception e) {
 ...
 }
 }
 }

Other Patterns

• – Version Numbering
• – Sequence Blocks

Overall view

DTODTOAssembler
creates

Facade
SessionBean

uses manages

Business
Delegate

interact (exchanging a DTO)ServiceLocator

Search the
other beans

Sarch the facade

In the simplest case it's a DAO

SessionBean

Entity

accesses

Intercepting Filter Pattern

http://java.sun.com/blueprints/
corej2eepatterns/Patterns/

Conclusion
" There are many decisions that must be made for a

successful J2EE implementation "

Key patterns for J2EE:
– session façade
– service locator
– value object / data transfer object
– data access object

Use a combination of time tested patterns and best
practices

