EJB Patterns

Architectural Patterns

ern n. an idea that has
been useful in one practical
context and will probably be
useful in others
- Martin Fowler

structural patterns
*facade
useful if you want to provide a simple
interface o a complex subsystem
* proxy
applicable when a more versatile
reference to an object is required
(e.g., remote proxy}

creational patterns

*1acior

usetul when a class cannot anticipate
the instance it must create, or the
class wanfs to delegate the decision
to a subclass

*singleton

used when there must be exactly one
instance of a class and it must be
accessible from a wellknown point

behavioral patterns

*command
useful when you want to
parameterize objects by an action to
perform

*strategy
useful when you want to separate
clients from their behavior

What is a “pattern™?

“The best solution to a recurring problem”

Recurring software design problems
identified and catalogued in a standard
way ao as to be accessibile to everybody
and usable in any programming language.

What is a J2EE pattern?

« A J2EE design pattern is essentially any pattern

that utilizes J2EE technology to solve a recurring
problem.

» Patterns are typically classified by logical tier:
— presentation tier

— business tier
— integration (EIS) tier

Architecture decisions
Use MVC architecture

Clear separation of design concerns

Easier maintenance
— decreased code duplication
— Dbetter isolation and less interdependence

. Model
Easy to add new client types or | sl i
. . . v Ecposss pplicatian
junetionalt
adjust to different client . e
requirements
A common approach in J2EE ' WP Controller
! +Dofines appllcation behavior
- MOdEI - EJ BS » Ranuasts opdates from madals | * Maps usger actions 1o
. * Seqds user gestures fo corfroller Y- -¥) .':’;:;'“y"“f‘ -
— View = JSPs - ATows controlle to select view User Gestures il '2;:;:::";5

— Controller = servlet

DAO Pattern
Data Access Object

BusinessObject DAO DataSource

: 1: Create ! :

. T '

| 2: Get Data :

T |2.1: GetData |

TransferObje
2.2: Create
{T==

2. 3. Return Object

ITI4: Set Property

: 3: Set Property T
|
f
|

I__IS: Set Data

5.1: Get Property

5.2 Get Property

1
|
I
I
I
I
I
I
|
I
I
1
|
I
}
I
I
I

5.3: Set Data

o dd—-

Data Transfer Objects (DTO)

also known as Value Objectsor VO,

used to transfer data between software application
subsystems.

DTQO's are often used in conjunction with DAOs to
retrieve data from a database.

DTOs do not have any behaviour except for
storage and retrieval of its own data (mutators
and accessor).

Overall view -

accesses
creates

DTOAssembler > DTO SessionBean

manage

Search the
other beans

Facade |In the simplest case it's a DAO
SessionBean

ServiceLocator interact (exchanging a DTO)

Business
Delegate

Sarch the faca

The session facade Pattern

« Uses a session bean to encapsulate the
complexity of interactions between the business
objects participating in a workflow.

 Manages the business objects,

and provides a uniform
coarse-grained service /.
access layer to clients @
Client
&2
@

Business Delegate Pattern

« Use a Business Delegate to

— Reduce coupling between presentation-tier and business service
components

— Hide the underlying implementation details of the business
service components

— Cache references to business services components

— Cache data

— Translate low level exceptions to application level exceptions
— Transparently retry failed transactions

— Can create dummy data for clients

Mapping Session Facade on use

CaSesS

Session Beans

BankTeller

transfer
withdraw
deposit

LoanServices

approveloan
creatloan

InvestmentServices

buyStock
sellStock
buyBond

Entity Beans

.

Singleton Pattern

public class MySingleton { self

to it
private static MySingleton _instance; «— cache

private MySingleton() {
I/l construct object. ..

}

Il For lazy initialization

public static synchronized MySingleton getinstance() {
if (_instance==null) { ¢y
Tmstance = new MySingleton(); — is ermpP

ach® ™
return _instance; if ¢ghe © an ist@

/| Remainder of class definition. ..

}

Home Factory Example

public final class MyBeanHomeFactory {

private static MyBeanHomeFactory factory = null;

private static MyBeanHome handle = null;

public final MyBeanHome getHome() {
return handle; }

public static MyBeanHomeFactory getSingleton() {
if (factory == null) {factory = new CoursesEJB(); }
return factory ;

}
private MyBeanHomeFactory () {

try {
Object result = DirectoryAccess.lookup(" MyBean");
MyBeanHome handle = (MyBeanHome)
PortableRemoteObject.narrow(result, MyBeanHome.class);
}
catch (RemoteException ex1) { ex1.printStackTrace(); }
catch (CreateException ex1) { ex1.printStackTrace(); }

}
}

MyBeanHome mbh=mBeanHomeFactory.getSingleton().getHome();

The Home Factory Pattern

Insulates clients from the naming service caches
lookup for better performance

Can be used for EJB home and JNDI lookups

Uses the singleton pattern to ensure only one
instance of the factory class is created

‘ HomeFactory
EB¥homes : Hashtable = new HashTable()

WgetSingleton() : HomeFactory
SookupHome(aClass : Class) : EJBHome

4
@ requests-creation ' <<Interface>>
EJBHome
@ creates |
EJBClient
@‘uses, - W

> AccountHome

Service Locator Pattern

2 - Verify
Sewice in
cache

5 - Add service
in cache
Service y

Locator

1 - lookUpC)

A V services cache Qgt sevice
/6 - Return \
service
4 - Return

service =

— .-
I =

([.'J."I"."""" —~ 7 - Use sewice 1000000 |-
lent Server

...to acquire an EJB Home object for the first time, Service Locator first
creates a JNDI initial context object and performs a lookup on the
EJB Home object.

But not only for EJB Home also for other kinds of services...an
enhanced Service Locator can have a verifier mechanism that
checks the cached services' validity by monitoring them during a
cycle of a specified frequency.

Service Locator Pattern

« Use a Service Locator to

— Abstract naming service usage

— Shield complexity of service lookup and creation

— Promote reuse

— Enable optimize service lookup and creation functions

» Usually called within Business Delegate or
Session Facade object

Service Locator Pattern

package ...;
import ...;

public class ServiceLocator {
private static ServiceLocator serviceLocator;
private static Context context;

protected ServicelLocator() throws Exception {
context = getlnitialContext();

}

public static synchronized ServiceLocator getinstance() throws Exception {
if (serviceLocator == null) {
serviceLocator = new ServicelLocator();

}

return servicelLocator;

}

Service Locator Pattern

private Context getlnitialContext() throws NamingException {
Hashtable environment = new Hashtable();

enwronment put(Context.INITIAL_CONTEXT_FACTORY,
"org.jnp.interfaces.NamingContextFactory");

enwronment put(Context.URL_PKG_PREFIXES,
"org.jboss.naming:org.jnp.interfaces");

environment.put(Context.PROVIDER_URL, "jnp://localhost:1099");
return new InitialContext(environment);

Service Locator Pattern

public static EJBHome getEjpbHome(String ejpName, Class ejbClass)

throws Exception {
Object object = context.lookup(ejbName);

EJBHome ejbHome = null;
ejpHome = (EJBHome) PortableRemoteObject.narrow(object,ejbClass);

if (ejpHome == null) { throw new Exception(
"Could not get home for " + ejpbName);

}

return ejbHome;

}
}

public static EJBLocalHome getEjbLocalHome(String ejpName)
throws Exception {

}...

Using the Service Locator

private void findEmployeeHome() throws EJBException {
final String ENTITY_NAME = "java:comp/env/ejb/employee";
if (employeeHome == null) {
try {
ServicelLocator locator = ServiceLocator.getinstance();
employeeHome = (EmployeeHome)
locator.getEjbLocalHome(ENTITY_NAME);
}

catch (Exception e) {

}
}
}

Other Patterns

* — Version Numbering
« — Sequence Blocks

Overall view -

accesses
creates

DTOAssembler > DTO SessionBean

manage

Search the
other beans

Facade |In the simplest case it's a DAO
SessionBean

ServiceLocator interact (exchanging a DTO)

Business
Delegate

Sarch the faca

Intercepting Filter Pattern

Consumer

Securi

ilter

LoggingFilter

FrontController

I

Incoming
Reguest

T

=

Forward request

Outgoing
response

1%y

Forward request

En‘clete Request

I Response
L] l l L]
!:pty
Forward response I
J ; |
’PP'}'

Processing

TZard ar maor

—~{Intercepting Filtef
!

Centralize Control

| Front Controller| | Composite View |

Lrizpatch to Delegate Processing

e to Helpers
Compose Wiew
..| Yiew Helper | from Sub-Wiews
1
iteh o IDelegate Frocessing
L] to Helpers
r] | Front Controller
+ Anoess
Astess Control | Business
Business Processing - ;
Senrices '-'5:35 Senvices
‘View | Service To Worket— |
WECESS Acpess J
usiness Business
er-.rices—l : rSewices
| Business Delegate |«
I‘n.ﬂe::liate ‘ Locate
Business .
_ Sernvices
Frocessing
Locate =
1 Facade Swices—-{ Service Lo-::ator|

tain Auicess Business
posite List
Objects

Encapsulate Dat
¥

r Object Assembler| [Value List Handler |

Encapsulate
[rata
Encapsulat

E lat _
nespedldte ol Transfer Object [Data

Encapsulate Arccass

cess Data Data [ata Sources

Jources

h J
T Data Access Object]

http://java.sun.com/blueprints/
corej2eepatterns/Patterns/

Conclusion

" There are many decisions that must be made for a
successful J2EE implementation "

Key patterns for J2EE:
— session facade
— service locator
— value object / data transfer object
— data access object

Use a combination of time tested patterns and best
practices

