
1

1

JNDI

Java Naming and Directory
Interface

See also:
http://java.sun.com/products/jndi/tutorial/trailmap.html

Naming service

A naming service is an entity that

•associates names with objects.We call this binding
names to objects. This is similar to a telephone company ’s

associating a person ’s name with a specific residence ’s

telephone number

•provides a facility to find an object based on a name.We

call this looking up or searching for an object.This is

similar to a telephone operator finding a person ’s telephone

number based on that person ’s name and connecting the two

people.

In general,a naming service can be used to find any kind of

generic object, like a file handle on your hard drive or a printer

located across the network.

2

2

Directory service

A directory object differs from a generic object because

you can store attributes with directory objects. For
example,you can use a directory object to represent a user in

your company.You can store information about that user,like

the user ’s password,as attributes in the directory object.

A directory service is a naming service that has been

extended and enhanced to provide directory object

operations for manipulating attributes.

A directory is a system of directory objects that are all

connected. Some examples of directory products are
Netscape Directory Server and Microsoft ’s Active Directory.

Directory service

Directories are similar to DataBases, except that they

typically are organized in a hierarchical tree-like

structure. Typically they are optimized for reading.

3

3

Examples of Directory services

Netscape Directory Server

Microsoft ’s Active Directory

Lotus Notes (IBM)

NIS (Network Information System) by Sun

NDS (Network Directory Service) by Novell

LDAP (Lightweight Directory Access Protocol)

JNDI concepts

JNDI is a system for Java-based clients to interact with

naming and directory systems. JNDI is a bridge over naming
and directory services, that provides one common interface to

disparate directories.

Users who need to access an LDAP directory use the same

API as users who want to access an NIS directory or Novell’s
directory. All directory operations are done through the JNDI

interface, providing a common framework.

4

4

JNDI advantages

-You only need to learn a single API to access all sorts of
directory service information, such as security credentials,
phone numbers, electronic and postal mail addresses,
application preferences, network addresses, machine
configurations, and more.

-JNDI insulates the application from protocol and
implementation details.

-You can use JNDI to read and write whole Java objects
from directories.

- You can link different types of directories, such as an
LDAP directory with an NDS directory, and have the
combination appear to be one large, federated directory.

JNDI advantages

Applications can store factory objects and configuration
variables in a global naming tree using the JNDI API.

JNDI, the Java Naming and Directory Interface, provides a global
memory tree to store and lookup configuration objects. JNDI will
typically contain configured Factory objects.

JNDI lets applications cleanly separate configuration from the
implementation. The application will grab the configured factory
object using JNDI and use the factory to find and create the
resource objects.

In a typical example, the application will grab a database

DataSource to create JDBC Connections. Because the
configuration is left to the configuration files, it's easy for the
application to change databases for different customers.

5

5

JNDI Architecture

The JNDI homepage
http://java.sun.com/products/jndi
has a list of service providers.

JNDI concepts

An atomic name is a simple,basic,indivisible component of a

name.For example,in the string /etc/fstab ,etc and fstab are
atomic names.

A binding is an association of a name with an object.

A context is an object that contains zero or more bindings.
Each binding has a distinct atomic name. Each of the mtab

and exports atomic names is bound to a file on the hard disk.

A compound name is zero or more atomic names put

together. e.g. the entire string /etc/fstab is a compound name.
Note that a compound name consists of multiple bindings.

6

6

JNDI names

JNDI names look like URLs.
A typical name for a database pool is java:comp/env/jdbc/test. The
java: scheme is a memory-based tree. comp/env is the standard

location for Java configuration objects and jdbc is the standard location
for database pools.

Other URL schemes are allowed as well, including RMI
(rmi://localhost:1099) and LDAP. Many applications, though will stick to
the java:comp/env tree.

Examples
java:comp/env Configuration environment
java:comp/env/jdbc JDBC DataSource pools

java:comp/env/ejb EJB remote home interfaces
java:comp/env/cmp EJB local home interfaces (non-standard)
java:comp/env/jms JMS connection factories
java:comp/env/mail JavaMail connection factories
java:comp/env/url URL connection factories
java:comp/UserTransaction UserTransaction interface

JNDI names

There are three commonly used levels of naming scope in JBoss:
names under java:comp,
names under java:,

any other name.

java:comp context and its subcontexts are only available to the
application component associated with that particular context.

Subcontexts and object bindings directly under java: are only visible
within the JBoss server virtual machine and not to remote clients.

Any other context or object binding is available to remote clients,
provided the context or object supports serialization.

An example of where the restricting a binding to the java: context is
useful would be a javax.sql.DataSource connection factory that can only
be used inside of the JBoss server where the associated database pool
resides. On the other hand, an EJB home interface would be boung to a
globally visible name that should accessible by remote client.

7

7

Contexts and Subcontexts

A naming system is a connected set of
contexts.

A namespace is all the names contained
within naming system.

The starting point of exploring a
namespace
is called an initial context. An initial
context
is the first context you happen to use.

To acquire an initial context, you use an

initial context factory.
An initial context factory basically is your
JNDI driver.

Acquiring an initial context

When you acquire an initial context, you must supply the

necessary information for JNDI to acquire that initial context.

For example, if you’re trying to access a JNDI implementation

that runs within a given server, you might supply:

- The IP address of the server

- The port number that the server accepts
- The starting location within the JNDI tree

- Any username/password necessary to use the server

8

8

Acquiring an initial context

�

package examples;

public class InitCtx {
public static void main(String args[]) throws Exception {
// Form an Initial Context
javax.naming.Context ctx =

new javax.naming.InitialContext();
System.err.println("Success!");
Object result = ctx.lookup("PermissionManager");

}
}

java
-Djava.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
-Djava.naming.provider.url=jnp://193.205.194.162:1099
-Djava.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
examples.InitCtx

Acquiring an initial context

�

java.naming.factory.initial: The name of the environment property for
specifying the initial context factory to use. The value of the property
should be the fully qualified class name of the factory class that will
create an initial context.

java.naming.provider.url: The name of the environment property for
specifying the location of the JBoss JNDI service provider the client will
use. The NamingContextFactory class uses this information to know
which JBossNS server to connect to. The value of the property should be
a URL string. For JBossNS the URL format is
jnp://host:port/[jndi_path].
Everything but the host component is optional. The following examples
are equivalent because the default port value is 1099.
jnp://www.jboss.org:1099/

www.jboss.org:1099
www.jboss.org

9

9

Acquiring an initial context

�

java.naming.factory.url.pkgs:
The name of the environment property for specifying the list of package
prefixes to use when loading in URL context factories. The value of the
property should be a colon-separated list of package prefixes for the

class name of the factory class that will create a URL context factory. For
the JBoss JNDI provider this must be
org.jboss.naming:org.jnp.interfaces.
This property is essential for locating the jnp: and java: URL context
factories of the JBoss JNDI provider.

Another example

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import java.util.Hashtable;
class Lookup {
public static void main(String[] args) {
// Check that user has supplied name of file to lookup
if (args.length != 1) {
System.err.println("usage: java Lookup <filename>");
System.exit(-1);

}
String name = args[0];
// Identify service provider to use
Hashtable env = new Hashtable(11);
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

try {
// Create the initial context
Context ctx = new InitialContext(env);
// Look up an object
Object obj = ctx.lookup(name);
// Print it out
System.out.println(name +

" is bound to: " + obj);
// Close the context when we're done
ctx.close();

} catch (NamingException e) {
System.err.println("Problem looking up "

+ name + ": " + e);
}
}

}

10

10

LDAP

example

package jndiaccesstoldap;
import javax.naming.Context;
import javax.naming.directory.InitialDirContext;
import javax.naming.directory.DirContext;
import javax.naming.directory.Attributes;
import javax.naming.NamingException;
import java.util.Hashtable;
public class Getattr {
public static void main(String[] args) {
// Identify service provider to use
Hashtable env = new Hashtable(11);
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");

//env.put(Context.PROVIDER_URL, "ldap://ldap.unitn.it:389/o=JNDITutorial");
env.put(Context.PROVIDER_URL, "ldap://ldap.unitn.it:389/o=personale");

try {
// Create the initial directory context
DirContext ctx = new InitialDirContext(env);

// Ask for all attributes of the object
Attributes attrs = ctx.getAttributes("cn=Ronchetti

Marco");

// Find the surname ("sn") and print it
System.out.println("sn: " + attrs.get("sn").get());

// Close the context when we're done
ctx.close();

} catch (NamingException e) {
System.err.println("Problem getting attribute: " + e);

}}}

Operations on a JNDI context

list() retrieves a list of contents available at the current

context.This typically includes names of objects bound to the
JNDI tree,as well as subcontexts.

lookup() moves from one context to another context,such as

going from c:\ to c:\windows. You can also use lookup()to look

up objects bound to the JNDI tree.The return type of
lookup()is JNDI driver specific.

rename() gives a context a new name

11

11

Operations on a JNDI context

createSubcontext()creates a subcontext from the current

context,such as creating c:\foo \bar from the folder c:\foo.

destroySubcontext()destroys a subcontext from the current

context,such as destroying c:\foo \bar from the folder c:\foo.

bind()writes something to the JNDI tree at the current
context.As with lookup(),JNDI drivers accept different

parameters to bind().

rebind()is the same operation as bind,except it forces a bind

even if there is already something in the JNDI tree with the
same name.

JNDI in JBoss

The JNDIView MBean
allows the user to
view the JNDI

namespace tree as it
exists in the JBoss
server using the JMX
agent view interface.

12

12

JNDI in JBoss

JNDI in JBoss

13

13

JNDI e EJB: definizione di proprietà in configuration

An example ejb-jar.xml env-entry fragment
<!-- ... -->
<session>

<ejb-name>ASessionBean</ejb-name>
<!-- ... -->
<env-entry>
<description>The maximum number of tax exemptions allowed </description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>
</env-entry>
<env-entry>
<description>The tax rate </description>

<env-entry-name>taxRate</env-entry-name>
<env-entry-type>java.lang.Float</env-entry-type>
<env-entry-value>0.23</env-entry-value>
</env-entry>
</session>
<!-- ... -->

JNDI e EJB: accesso alle proprietà in configuration

env-entry access code fragment

InitialContext iniCtx = new InitialContext();

Context envCtx = (Context) iniCtx.lookup("java:comp/env");
Integer maxExemptions = (Integer) envCtx.lookup("maxExemptions");
Float taxRate = (Float) envCtx.lookup("taxRate");

14

14

JNDI e EJB: definizione di proprietà in configuration

An example ejb-jar.xml ejb-ref descriptor fragment
<session>
<ejb-ref>

<ejb-name>ShoppingCartUser</ejb-name>
<!--...-->
<ejb-ref-name>ejb/ShoppingCartHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>org.jboss.store.ejb.ShoppingCartHome</home>
<remote> org.jboss.store.ejb.ShoppingCart</remote>
<ejb-link>ShoppingCartBean</ejb-link>
</ejb-ref>
</session>

InitialContext iniCtx = new InitialContext();
Context ejbCtx = (Context) iniCtx.lookup("java:comp/env/ejb");
ShoppingCartHome home =

(ShoppingCartHome) ejbCtx.lookup("ShoppingCartHome");

JNDI e Servlets: definizione di proprietà in configuration

<web>
<!-- ... -->
<servlet> <servlet-name>AServlet</servlet-name> <!-- ... --> </servlet>

<!-- ... -->
<!-- JavaMail Connection Factories (java:comp/env/mail) -->
<resource-ref>
<description>Default Mail</description>
<res-ref-name>mail/DefaultMail</res-ref-name>
<res-type>javax.mail.Session</res-type>
<res-auth>Container</res-auth>

Context initCtx = new InitialContext();
javax.mail.Session s = (javax.mail.Session)

initCtx.lookup("java:comp/env/mail/DefaultMail");

