
Applications 
 
 
Marco Ronchetti 
Università degli Studi di Trento 



2 2 

Android Applications 
An Android application typically consists of one or 
more related, loosely bound activities for the user to 
interact with.  
 
Android has an application launcher available at the 
Home screen, typically in a sliding drawer which 
displays applications as icons, which the user can pick 
to start an application.  
 
Android ships with a rich set of applications that may 
include email, calendar, browser, maps, text 
messaging, contacts, camera, dialer, music player, 
settings and others.  
 



3 3 

Application Launcher 

You can replace it 

See e.g.  
http://xjaphx.wordpress.com/2011/06/12/create-application-launcher-as-a-list/ 
  



4 4 

Application package 
An application is a single APK (application package) 
file. An APK file roughly has three main components.  
 
•  Dalvik executable: all your Java source code 

compiled down to Dalvik executable. This is the 
code that runs your application.  

•  Resources: everything that is not code (images, 
audio/video clips, XML files describing layouts, 
language packs, and so on.  

•  Native libraries: e.g. C/C++ libraries.  



5 5 

Signing applications 
Android applications must be signed before they can 
be installed on a device 
 
To distribute your application commercially, you’ll 
want to sign it with your own key.  



6 6 

Distributing applications 
Unlike the iPhone, on Android, there can be many 
different Android stores or markets. Each one can 
have its own set of policies with respect to what is 
allowed, how the revenue is split, and so on. 
 
The biggest market currently is Android Market run 
by Google 
 
Applications can also be distributed via the web. 
When you download an APK file from a website by 
using the Browser, the application represented by the 
APK file automatically gets installed on your phone. 



7 7 

Granting and checking permissions 

Impostazioni->Altro->Gestione Applicazioni -> … 



8 8 

Security 
Android has a security framework. 
 
http://source.android.com/devices/tech/security/
index.html 
 
The Android File System can be encrypted. 
Encryption on Android uses the dm-crypt layer in the 
Linux kernel. 



9 9 

Security model 
Android OS is a multi-user Linux in which each 
application is a different user. 
By default, the system assigns each application a 
unique Linux user ID (the ID is unknown to the 
application). The system sets permissions for all the 
files in an application so that only the user ID assigned 
to that application can access them.  
Each process has its own virtual machine (VM), so an 
application's code runs in isolation from other 
applications. 
By default, every application runs in its own Linux 
process.  



10 10 

Principle of  least privilege 
 

Principle of least privilege (or “need to know”) 
 
Each application, by default, has access only to the 
components that it requires to do its work and no 
more.  
 
A variation of “information hiding”, or “Parnas’ 
principle”. 
 



11 11 

Data sharing 
It's possible to arrange for two applications to share 
the same Linux user ID, in which case they are able to 
access each other's files.  
Applications with the same user ID can also arrange to 
run in the same Linux process and share the same VM 
(the applications must also be signed with the same 
certificate). 
 
An application can request permission to access 
device data such as the user's contacts, SMS messages, 
the mountable storage (SD card), camera, Bluetooth, 
and more. All application permissions must be 
granted by the user at install time. 
 



12 12 

Process lifetime 
Android 
•  starts the process when any of the application's 

components need to be executed,  
•  shuts down the process when 

•  it's no longer needed  
•  the system must recover memory for other 

applications. 
 
 



 
Getting started: 
Installing IDE and SDK 

 
 
Marco Ronchetti 
Università degli Studi di Trento 



14 14 

Get ready in four steps 
1.  Get Eclipse 
2.  Get the Android SDK 
3.  Run Eclipse, and install the ADT plugin into it 
4.  In Eclipse, setup the emulator (choose the ADV)  

You’re ready to go! 
 
For details, come to the Laboratory lecture, or else see: 
http://developer.android.com/sdk/installing.htmlz 
 
or take one of the many other tutorials on the net. 



15 15 

Alternative: Android Studio 

https://developer.android.com/sdk/installing/studio.html 

It is only version 0.42… 



16 16 

Warning on Linux 64 bits! 
The Android SDK is 32 bit, therefore on an 64 bit 
Linux system you need to have the package ia32-libs 
installed. For Ubuntu you can do this via the 
following command:  
apt-get install ia32-libs  



17 17 

Tools behind the scenes 
dx  

•  allows to convert Java .class files into .dex (Dalvik 
Executable) files.  

aapt (Android Asset Packaging Tool) 
•  packs Android applications into an .apk (Android 

Package) file.  
adb (Android debug bridge) 

ADT (Android Development Tools for Eclipse) 
•  A development tool provided by Google to perform 

automatic conversion from .class to .dex files and to 
create the apk during deployment. It also provides 
debugging tools, and an Android device emulator. 

 



18 18 

ADV - Android Virtual Device  
An emulator configuration that lets you model an actual device by 
defining hardware and software options 
 
An AVD consists of: 
•      A hardware profile 

•  Defines the hardware features of the virtual device (whether it has has a 
camera, a physical QWERTY keyboard or a dialing pad, how much 
memory it has etc. 

•      A mapping to a system image:  
•  You can define what version of the Android platform will run on the 

virtual device 

•      Other options: the emulator skin (screen dimensions, appearance,  etc.), 
emulated SD card 

•      A dedicated storage area on your development machine:  
•  the device's user data (installed applications, settings, and so on) and 

emulated SD card are stored in this area. 



19 19 

ADV - Android Virtual Device  
 
You create an AVD: 
 
•  with  the graphical AVD Manager in Eclipse 

•  See 
http://developer.android.com/guide/developing/devices/
managing-avds.html 

•  from the command line ($ android create avd),  
•  see 

http://developer.android.com/guide/developing/devices/
managing-avds-cmdline.html 

 
 
 
 



 
Getting started: 
Hello Android 

 
 
Marco Ronchetti 
Università degli Studi di Trento 



21 21 

android.app.application 
How shall we start? 
 
As we know already, there is no main… 
 
But there is an ”application” class in the API. 
(actually, android.app.application) 
 
Probably we should subclass that, like we do with 
java.applet.Applet or with 
javax.servlet.http.HttpServlet? 



22 22 

NO! 
 
 
Application is a base class ONLY for keeping a global 
application state.  
 
We need to subclass another thing: Activity 



23 23 

HelloAndroid 
package com.example.helloandroid; 
 
import android.app.Activity; 
import android.os.Bundle; 
 
public class HelloAndroid extends Activity { 
    /** Called when the activity is first created. */ 
    @Override 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.main); 
    } 
} 



24 24 

HelloAndroid 
package com.example.helloandroid; 
 
import android.app.Activity; 
import android.os.Bundle; 
import android.widget.TextView; 
 
public class HelloAndroid extends Activity { 
   /** Called when the activity is first created. */ 
   @Override 
   public void onCreate(Bundle savedInstanceState) { 
       super.onCreate(savedInstanceState); 
       TextView tv = new TextView(this); 
       tv.setText("Hello, Android"); 
       setContentView(tv); 
   } 
} 



25 25 

Launching the emulator… 



26 26 

HelloAndroid: questions. 
package com.example.helloandroid; 
 
import android.app.Activity; 
import android.os.Bundle; 
 
public class HelloAndroid extends Activity { 
    /** Called when the activity is first created. */ 
    @Override 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.main); 
    } 
} 

•  What is an Activity? 
•  What is onCreate? 
•  What is a Bundle? 
•  What is R? 

•  What is a TextView?? 



Dissecting the HelloWorld 
 
 
Marco Ronchetti 
Università degli Studi di Trento 



28 28 

Class Activity 

An activity is a single, focused thing that the user can do.  
 
Almost all activities interact with the user, so the Activity class takes care 
of creating a window for you in which you can place your UI with 
setContentView(int).  
 
 

Doesn’t it reminds you of “JFrame” and “setContentPane()? 



29 29 

Class Activity 

An activity is a single, focused thing that the user can do.  
 
Almost all activities interact with the user, so the Activity class takes care 
of creating a window for you in which you can place your UI with 
setContentView(int).  
 
 

Doesn’t it reminds you of “JFrame” and “setContentPane()? 

Interface to global information  
about an application environment.  



30 30 

 
While activities are often presented to 
the user as full-screen windows, they 
can also be used in other ways: as 
floating windows (via a theme with 
R.attr.windowIsFloating set) or 
embedded inside of another activity 
(using ActivityGroup).  
 

Class Activity 



31 31 

Resources 
You should always externalize resources (e.g. images 
and strings) from your application code, so that you 
can:  
•  maintain them independently.  
•  provide alternative resources, e.g.: 

•  different languages  
•  different screen sizes 
  

Resources must be organized in your project's res/ 
directory, with various sub-directories that group 
resources by type and configuration. 
 



32 32 

The R class 
When your application is compiled, aapt generates the 
R class, which contains resource IDs for all the 
resources in your res/ directory. 
 
For each type of resource, there is an R subclass (for 
example, R.layout for all layout resources) and for 
each resource of that type, there is a static integer (for 
example, R.layout.main). This integer is the resource 
ID that you can use to retrieve your resource. 
 
More about resources in future lectures. 



33 33 

R.Java in gen/ 
/* AUTO-GENERATED FILE.  DO NOT MODIFY. 
 * 
 * This class was automatically generated by the 
 * aapt tool from the resource data it found.  It 
 * should not be modified by hand. 
 */ 
 
package com.example.helloandroid; 
public final class R { 
    public static final class attr { 
    } 
    public static final class drawable { 
        public static final int ic_launcher=0x7f020000; 
    } 
    public static final class layout { 
        public static final int main=0x7f030000; 
    } 
    public static final class string { 
        public static final int app_name=0x7f040001; 
        public static final int hello=0x7f040000; 
    } 
} 



34 34 

Res/layout/main.xml 
<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android="http://
schemas.android.com/apk/res/android" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent" 
    android:orientation="vertical" > 
 
    <TextView 
        android:layout_width="fill_parent" 
        android:layout_height="wrap_content" 
        android:text="@string/hello" /> 
 
</LinearLayout> 



35 35 

onCreate(Bundle b) 
Callback invoked when the activity is starting.  
 
This is where most initialization should go. 
 
If the activity is being re-initialized after previously 
being shut down then this Bundle contains the data it 
most recently supplied in 
onSaveInstanceState(Bundle), otherwise it is null. 
 
Note: a Bundle is a sort of container for serialized 
data. 



36 36 

TextView 
Displays text to the user and optionally allows them to 
edit it. A TextView is a complete text editor, however 
the basic class is configured to not allow editing; see 
EditText for a subclass that configures the text view for 
editing.  This class represents the basic building block for user 

interface components. A View occupies a rectangular 
area on the screen and is responsible for drawing and 

event handling. View is the base class for widgets, which 
are used to create interactive UI components (buttons, 

text fields, etc.). 
 

Doesn’t it remind you the java.awt.Component? 



37 37 

The project 



38 38 

AndroidManifest.xml 
<?xml version="1.0" encoding="utf-8"?> 
<manifest xmlns:android="http://schemas.android.com/apk/res/android" 
    package="com.example.helloandroid" 
    android:versionCode="1" 
    android:versionName="1.0" > 
 
    <uses-sdk android:minSdkVersion="15" /> 
 
    <application 
        android:icon="@drawable/ic_launcher" 
        android:label="@string/app_name" > 
        <activity 
            android:name=".HelloAndroidActivity" 
            android:label="@string/app_name" > 
            <intent-filter> 
                <action android:name="android.intent.action.MAIN" /> 
                <category android:name="android.intent.category.LAUNCHER" /> 
            </intent-filter> 
        </activity> 
    </application> 
 
</manifest> 



39 39 

project.properties 
# This file is automatically generated by Android Tools. 
# Do not modify this file -- YOUR CHANGES WILL BE ERASED! 
# 
# This file must be checked in Version Control Systems. 
# 
# To customize properties used by the Ant build system use, 
# "ant.properties", and override values to adapt the script to your 
# project structure. 
 
# Project target. 
target=android-15 

 


