
1

Basic UI elements:
Defining Activity UI in the
code

Marco Ronchetti
Università degli Studi di Trento

2

UI Programmatically
public class UIThroughCode extends Activity {
 LinearLayout lLayout;
 TextView tView;
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 lLayout = new LinearLayout(this);
 lLayout.setOrientation(LinearLayout.VERTICAL);
 lLayout.setLayoutParams(new LayoutParams(LayoutParams.MATCH_PARENT,

 LayoutParams.MATCH_PARENT));
 tView = new TextView(this);
 tView.setText("Hello, This is a view created programmatically! ”)");
 tView.setLayoutParams(new LayoutParams(LayoutParams.MATCH_PARENT,

 LayoutParams.WRAP_CONTENT));
 lLayout.addView(tView);
 setContentView(lLayout);
 }
}

From http://saigeethamn.blogspot.it

3

Preferences

Marco Ronchetti
Università degli Studi di Trento

4

SharedPreferences
SharedPreferences allows to save and retrieve
persistent key-value pairs of primitive data types. This
data will persist across user sessions (even if your
application is killed).

 getSharedPreferences(String name, int mode)
- Uses multiple preferences files identified by name, which you specify
with the first parameter.

 getPreferences()
- Use this if you need only one preferences file for your Activity. This
simply calls the underlying getSharedPreferences(String, int) method by
passing in this activity's class name as the preferences name

A method
of Contex

A method
of Activity

5

SharedPreferences methods
boolean contains(String key)
Checks whether the preferences contains a preference.

T getT(String key, T defValue)
 Retrieve a T value from the preferences where T={int,
float, boolean, long, String, Set<String>}.

SharedPreferences.Editor edit()
All changes you make in an editor are batched, and
not copied back to the original SharedPreferences until
you call commit() or apply()

Value returned
If key does not exist

6

SharedPreferences.Editor methods
Void apply(), boolean commit()
Commit your preferences changes back (apply is
asynchronous)

Editor putT(String key)
 Stores a T value in the preferences where T={int, float,
boolean, long, String, Set<String>}.

Editor remove(String key)
Mark in the editor that a preference value should be
removed

Editor clear ()
Mark in the editor that all preference values should be
removed

7

User Preferences
Shared preferences are not strictly for saving "user
preferences," such as what ringtone a user has chosen.

For creating user preferences for your application, you
should use PreferenceActivity, which provides an
Activity framework for you to create user preferences,
which will be automatically persisted (using shared
preferences).

It is based on Fragments

8

Notification

Marco Ronchetti
Università degli Studi di Trento

9

Notification Bar

PULL
DOWN

10

SimpleNotification
public class SimpleNotification extends Activity {
 private NotificationManager nm;
 private int SIMPLE_NOTIFICATION_ID;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 nm = (NotificationManager)getSystemService(NOTIFICATION_SERVICE);
 final Notification notifyDetails = new Notification(

 R.drawable.android,"New Alert, Click Me!",
 System.currentTimeMillis());

 Button cancel = (Button)findViewById(R.id.cancelButton);
 cancel.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {

 nm.cancel(SIMPLE_NOTIFICATION_ID);
 }});}

Adapted from http://saigeethamn.blogspot.it

11

SimpleNotification – part 2
 Button start = (Button)findViewById(R.id.notifyButton);
 start.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {

 Context context = getApplicationContext();
 CharSequence contentTitle = "Notification Details...";

 CharSequence contentText = "Browse Android Site by clicking me";
 Intent notifyIntent = new Intent
 (android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.android.com"));
 PendingIntent intent =

 PendingIntent.getActivity(SimpleNotification.this, 0, notifyIntent,
 android.content.Intent.FLAG_ACTIVITY_NEW_TASK);

 notifyDetails.setLatestEventInfo(context, contentTitle,
 contentText, intent);

 nm.notify(SIMPLE_NOTIFICATION_ID, notifyDetails);
 }
 });
 }}

12

Broadcast receivers

Marco Ronchetti
Università degli Studi di Trento

13

Bradcast receiver
a component that responds to system-wide broadcast
announcements.
Many broadcasts originate from the system—for example, a
broadcast announcing that the screen has turned off, the
battery is low, or a picture was captured.
Applications can initiate broadcasts—e.g. to let other
applications know that some data has been downloaded to
the device and is available for them to use.
Broadcast receivers don't display a user interface, but they
can crate a status bar notification.
More commonly, a broadcast receiver is just a "gateway" to
other components and is intended to do a very minimal
amount of work e.g. it might initiate a service.

14

Broadcast receiver

>adb shell
date +%s
1332793443
date -s +%s 1332793443
time 1332793443 -> 1332793443.0
settimeofday failed Invalid argument

public class MyBroadcastReceiver extends BroadcastReceiver {
 …
 public void onReceive(Context context, Intent intent) {

 …
 }
}

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package=”…I” android:versionCode=”1” android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <receiver android:name=".MyBroadcastReceiver">

 <intent-filter>
 <action android:name="android.intent.action.TIME_SET”/>
 </intent-filter>

 </receiver>
 </application>
 <uses-sdk android:minSdkVersion="13" />
</manifest>

Adapted from saigeethamn.blogspot.it

15

Broadcast receiver
public class MyBroadcastReceiver extends BroadcastReceiver {
 private NotificationManager nm;
 private int SIMPLE_NOTFICATION_ID;

 @Override
 public void onReceive(Context context, Intent intent) {
 nm = (NotificationManager) context.getSystemService

 (Context.NOTIFICATION_SERVICE);
 Notification n= new Notification(R.drawable.android,"Time Reset!",

 System.currentTimeMillis());
 PendingIntent myIntent = PendingIntent.getActivity(context, 0,

 new Intent(Intent.ACTION_VIEW, People.CONTENT_URI), 0);
 n.setLatestEventInfo(context, "Time has been Reset",

 "Click on me to view Contacts", myIntent);
 n|= Notification.FLAG_AUTO_CANCEL;
 n|= Notification.DEFAULT_SOUND;
 nm.notify(SIMPLE_NOTFICATION_ID, n);
 Log.i(getClass().getSimpleName(),"Sucessfully Changed Time");
 }
}

Adapted from saigeethamn.blogspot.it

16

Sending broadcast events
(in Context)
sendBroadcast (Intent intent, String
receiverPermission)
Broadcast the given intent to all interested
BroadcastReceivers, allowing an optional required
permission to be enforced.
This call is asynchronous; it returns immediately, and
you will continue executing while the receivers are
run.
No results are propagated from receivers and receivers
can not abort the broadcast.

17

Sending ordered broadcast events
(in Context)
sendOrderedBroadcast (Intent intent, String
receiverPermission)

Broadcast the given intent to all interested
BroadcastReceivers, delivering them one at a time to
allow more preferred receivers to consume the
broadcast before it is delivered to less preferred
receivers.
This call is asynchronous; it returns immediately, and
you will continue executing while the receivers are
run.

18

Sending ordered broadcast events
(in Context)
sendOrderedBroadcast (…)

Version of sendBroadcast(Intent) that allows you to
receive data back from the broadcast.
You supply your own BroadcastReceiver when calling:
its onReceive(Context, Intent) method will be called
with the result values collected from the other
receivers.
The broadcast will be serialized in the same way as
calling sendOrderedBroadcast(Intent, String).

19

LocalBroadcastManager
Helper to register for and send broadcasts of Intents to
local objects within your process.
Advantages of Local vs Global B.M.:
•  the data you are broadcasting will not leave your

app
•  (you don't need to worry about leaking private

data).
•  it is not possible for other applications to send these

broadcasts to your app
•  (you don't need to worry about having security

holes)
•  it is more efficient than sending a global broadcast

through the system.

20

Rooting a device

Marco Ronchetti
Università degli Studi di Trento

21

Rooting
The process of allowing users of Android devices to get
root access. Varies widely by device, as it usually exploits a
security weakness in the firmware shipped from the
factory.

Goal:
•  to overcome limitations imposed by that carriers and

hardware manufacturers
•  to alter or replace system applications and settings
•  to run specialized apps that require administrator-level

permissions
•  to perform other operations that are otherwise

inaccessible to a normal Android user.

The process of rooting
On the iphone: jailbreaking

22

e.g.: CyanogenMod
a replacement firmware. Offers several features, like:

•  an OpenVPN client,
•  a reboot menu,
•  CPU overclocking and performance enhancements,

app permissions management

Over 1.5 M installations

23

Is it legal?
On July 26, 2010, the U.S. Copyright office announced
a new exemption making it officially legal to root a
device and run unauthorized third-party applications,
as well as the ability to unlock any cell phone for use
on multiple carriers.

24

Industry reaction
•  concern about improper functioning of devices

running unofficial software and related support
costs.

•  offers features for which carriers would otherwise
charge a premium

Technical obstacles have been introduced in many
devices (e.g. locked bootloaders).

In 2011 an increasing number of devices shipped with
unlocked or unlockable bootloaders.

25

The HTC case
“HTC is committed to listening to users and
delivering customer satisfaction. We have heard your
voice and starting now, we will allow our bootloader
to be unlocked for 2011 models going forward.

It is our responsibility to caution you that not all
claims resulting or caused by or from the unlocking of
the bootloader may be covered under warranty.

We strongly suggest that you do not unlock the
bootloader unless you are confident that you
understand the risks involved.”

See e.g. http://htcdev.com/bootloader/

