
1

Threads

Marco Ronchetti
Università degli Studi di Trento

2

Threads
When an application is launched, the system creates a thread of
execution for the application, called "main” or “UI thread”
This thread dispatches events to the user interface widgets, and
draws (uses the android.widget and android.view packages).

Unlike Java AWT/Swing, separate threads are NOT created
automatically.
Methods that respond to system callbacks (such as onKeyDown() to
report user actions or a lifecycle callback method) always run in the
UI thread.

If everything is happening in the UI thread, performing long
operations such as network access or database queries will block the
whole UI. When the thread is blocked, no events can be dispatched,
including drawing events. From the user's perspective, the
application appears to hang.

If the UI thread is blocked for more than 5 sec the user is presented
with the”ANR - application not responding” dialog.

3

the Andoid UI toolkit is not thread-safe !

Consequence:

you must not manipulate your UI from a worker
thread—all manipulation to the user interface must be
done within the UI thread.

You MUST respect these rules:
•  Do not block the UI thread
•  Do not access the Android UI toolkit from outside

the UI thread

4

An example from android developers
public void onClick(View v) {
 Bitmap b = loadImageFromNetwork(

 "http://example.com/image.png");
 myImageView.setImageBitmap(b);
}

WRONG!
Potentially
Slow
Operation!

public void onClick(View v) {

 .start();
}

new Thread(new Runnable() {
 public void run() {
 Bitmap b = loadImageFromNetwork(
 "http://example.com/image.png");
 myImageView.setImageBitmap(b);
 })

WRONG!
A non UI thread
accesses the UI!

5

Still not the solution…

public void onClick(View v) {
 Bitmap b;

 .start();
 myImageView.setImageBitmap(b);
}

new Thread(new Runnable() {
 public void run() {
 b = loadImageFromNetwork(
 "http://example.com/image.png");
 })

WRONG!
This does not wait for the
thread to finish!

6

The solution

public void onClick(View v) {

 .start();
}

new Thread(new Runnable() {
 public void run() {
 Bitmap b = loadImageFromNetwork(
 "http://example.com/image.png");
 myImageView.post(

 })

 new Runnable() {
 public void run() {
 mImageView.setImageBitmap(bitmap);
 }
}

public boolean post (Runnable action)
•  Causes the Runnable to be sent to the UI thread and to be run

therein. It is invoked on a View from outside of the UI thread.

OK! This code will
be run in
the UI thread

public boolean postDelayed (Runnable action, long delayMillis)

7

Java reminder: varargs
void f(String pattern, Object... arguments);

The three periods after the final parameter's type
indicate that the final argument may be passed
•  as an array or
•  as a sequence of arguments.

Varargs can be used only in the final argument
position.

Object a, b, c, d[10];
…
f(“hello”,d);
f(“hello”,a,b,c);

8

Varargs example
public class Test {
 public static void main(String args[]){ new Test(); }

 Test(){
 String k[]={"uno","due","tre"};
 f("hello",k);
 f("hello",“alpha“,“beta“);
 // f("hello“,“alpha“,“beta“,k); THIS DOES NOT WORK!
 }

 void f(String s, String... d){
 System.out.println(d.length);
 for (String k:d) {
 System.out.println(k);
 }
 }

}

9

AsyncTask<Params,Progress,Result>
Creates a new asynchronous task. The constructor
must be invoked on the UI thread.

AsyncTask must be subclassed, and instantiated in the
UI thread.
Methods to be overridden:

method where when

void onPreExecute() UI Thread before

Result doInBackground(Params...) Separate new
thread

during

void onProgressUpdate(Progress…) UI Thread

void onPostExecute(Result) UI Thread after

10

The more elegant solution
public void onClick(View v) {
 new DownloadImageTask().execute("http://example.com/image.png");
}

private class DownloadImageTask extends AsyncTask<String, Void, Bitmap> {
 protected Bitmap doInBackground(String... urls) {
 return loadImageFromNetwork(urls[0]);
 }
 protected void onPostExecute(Bitmap result) {
 mImageView.setImageBitmap(result);
 }
 }

11

public class AsyncDemoActivity extends ListActivity {
 private static final String[] item{"uno","due","tre","quattro",

 "cinque","sei”, "sette","otto","nove",
 "dieci","undici","dodici",};

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ListView listView = getListView();

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 new ArrayList<String>()));

 new AddStringTask().execute();
 }

Using Progress
package it.unitn.science.latemar;
import …

Adapted from the source code of
http://commonsware.com/Android/

12

Using Progress

 class AddStringTask extends AsyncTask<Void, String, Void> {
 @Override
 protected Void doInBackground(Void... unused) {
 for (String item : items) {
 publishProgress(item);
 SystemClock.sleep(1000);
 }
 return(null);
 }
 @SuppressWarnings("unchecked")
 @Override
 protected void onProgressUpdate(String... item) {
 ((ArrayAdapter<String>)getListAdapter()).add(item[0]);
 }

@Override
 protected void onPostExecute(Void unused) {
 Toast
 .makeText(AsyncDemoActivity.this,

 "Done!", Toast.LENGTH_SHORT)
 .show();
 }
 }
}

This is an inner class!

13

Using the ProgressBar

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />
 <ProgressBar
 android:id="@+id/pb1"
 android:max="10"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 style="@android:style/Widget.ProgressBar.Horizontal"
 android:layout_marginRight="5dp" />
</LinearLayout>

public class AsyncDemoActivity2
 extends Activity {
 ProgressBar pb;
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 pb=(ProgressBar) findViewById(R.id.pb1);
 new AddStringTask().execute();
 }

14

Using the ProgressBar
 class AddStringTask extends AsyncTask<Void, Integer, Void> {
 @Override
 protected void doInBackground(Void... unused) {
 int item=0;
 while (item<10){
 publishProgress(++item);
 SystemClock.sleep(1000);
 }
 }
 @Override
 protected void onProgressUpdate(Integer... item) {
 pb.setProgress(item[0]);
 }
}

15

Sensors

Marco Ronchetti
Università degli Studi di Trento

16

Sensor categories
Motion sensors
•  measure acceleration forces and rotational forces

along three axes. This category includes
accelerometers, gravity sensors, gyroscopes.

Environmental sensors
•  measure various environmental parameters, such as

ambient air temperature and pressure, illumination,
and humidity. This category includes barometers,
photometers, and thermometers.

Position sensors
•  measure the physical position of a device. This

category includes orientation sensors and
magnetometers.

17

Basic code for managing sensors
 public class SensorActivity extends Activity, implements SensorEventListener {
 private final SensorManager sm;
 private final Sensor sAcc;
 public SensorActivity() {
 sm= (SensorManager)getSystemService(SENSOR_SERVICE);
 sAcc= sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 }
 protected void onPause() {
 super.onPause();
 sm.unregisterListener(this);
 }
 protected void onResume() {
 super.onResume();
 sm.registerListener(this, sAcc, SensorManager.SENSOR_DELAY_NORMAL);
 }
 public void onAccuracyChanged(Sensor sensor, int accuracy) { }
 public void onSensorChanged(SensorEvent event) { }
 }

18

SensorManager
SensorManager sm=Context.getSystemService(SENSOR_SERVICE);

List<Sensor> getSensorList(int type)
•  get the list of available sensors of a certain type. Sensor
Sensor getDefaultSensor(int type)
•  Use this method to get the default sensor for a given type

void registerListener(SensorEventListener listener, Sensor sensor, int rate)
•  Registers a SensorEventListener for the given sensor.
void unregisterListener(SensorEventListener listener, Sensor sensor)
•  Unregisters a listener for the sensors with which it is registered.
void unregisterListener(SensorEventListener listener)
•  Unregisters a listener for all sensors.

•  Some methods for transforming data (Vector to matrix representation etc.)

19

Sensor types
int constants of the Sensor class describing sensor
types:
TYPE_ACCELEROMETER
 TYPE_ALL A constant describing all sensor types.
TYPE_AMBIENT_TEMPERATURE
TYPE_GRAVITY
TYPE_GYROSCOPE
TYPE_LIGHT
TYPE_LINEAR_ACCELERATION
TYPE_MAGNETIC_FIELD
TYPE_PRESSURE
TYPE_PROXIMITY
TYPE_RELATIVE_HUMIDITY
TYPE_ROTATION_VECTOR

20

Accelerometer
“Sensor's values are in meters/second^2 units. A sensor
measures the acceleration applied to the device. For this
reason, when the device is sitting on a table (and obviously
not accelerating), the accelerometer reads a magnitude of g
= 9.81 m/s^2. Similarly, when the device is in free-fall and
therefore dangerously accelerating towards to ground at
9.81 m/s^2, its accelerometer reads a magnitude of 0 m/
s^2.” (Android Developers – sensors)

21

Orientation sensor
“A compass is a navigational instrument for determining
direction relative to the Earth's magnetic poles. It
consists of a magnetized pointer (usually marked on the
North end) free to align itself with Earth's magnetic
field.” (Compass EN Wiki)
In Android's terminology it is called Orientation
sensor.

22

Gyroscope
“A gyroscope is an instrument consisting of a rapidly spinning
wheel so mounted as to use the tendency of such a wheel to
maintain a fixed position in space, and to resist any force which
tries to change it. The way it will move if a twisting force is
applied depends on the extent and orientation of the force and the
way the gyroscope is mounted. A free vertically spinning
gyroscope remains vertical as the carrying vehicle tilts, so
providing an artificial horizon. A horizontal gyroscope will
maintain a certain bearing, and therefore indicate a vessel's
heading as it turns. Modern gyroscopes (including those built-in
in smartphones) no longer have a spinning wheel.” (Gyroscope
Cambridge Encyclopedia)
“All values are in radians/second and measure the rate of
rotation around the X, Y and Z axis. The coordinate system is the
same as is used for the acceleration sensor.” (Android
Developers – sensors) Rotation is positive in the counter-
clockwise direction.

23

Sensor class
float getMaximumRange()
•  maximum range of the sensor in the sensor's unit.
int getMinDelay()
•  minimum delay allowed between two events in

microsecond or zero if this sensor only returns a value
when the data it's measuring changes

String getName()
float getPower()
•  the power in mA used by this sensor while in use
float getResolution()
•  resolution of the sensor in the sensor's unit.
int getType()
String getVendor()
int getVersion()

24

SensorManager sm= (SensorManager)getSystemService(SENSOR_SERVICE);
List<Sensor> sensorList = sm.getSensorList(Sensor.TYPE_ALL);
StringBuilder sensorString = new StringBuilder("Sensors:\n");
for(int i=0; i<sensorList.size(); i++) {
 sensorString.append(sensorList.get(i).getName()).append(", \n");
}

HTC EVO 4G
BMA150 3-axis Accelerometer
AK8973 3-axis Magnetic field sensor
AK8973 Orientation sensor
CM3602 Proximity sensor
CM3602 Light sensor

Samsung Nexus-S
KR3DM 3-axis Accelerometer
AK8973 3-axis Magnetic field sensor
AK8973 Orientation sensor
GP2A Light sensor
GP2A Proximity sensor
K3G Gyroscope sensor
Gravity Sensor
Linear Acceleration Sensor
Rotation Vector Sensor

25

Interface SensorEventListener
abstract void onAccuracyChanged(Sensor sensor, int
accuracy)
•  Called when the accuracy of a sensor has changed.
abstract void onSensorChanged(SensorEvent event)
•  Called when sensor values have changed.

26

Code examples
•  http://www.vogella.com/articles/AndroidSensor/

article.html accelerometer and compass examples

•  http://developer.android.com/guide/topics/
sensors/sensors_overview.html and following
pages

27

Sensors limitation - 1
From Jim Steele
Using available sensors in the Android platform: current
limitations and expected improvements

Comparing the sensors on these two phones demonstrates the
sensor fragmentation now found in Android:

1) Non-standard sensor availability: The Nexus-S has a
gyroscope (from ST Micro), but the EVO does not. In fact, most
Android devices do not have a gyroscope. There is no standard
availability of sensors across devices.

2) Non-standard sensor capability: The BMA150 is a Bosch
Sensortec 10-bit accelerometer, and the KR3DM is a ST Micro 12-
bit accelerometer (using a special part number). In fact, there is
no standard capability requirement for sensors across devices to
ensure consistentresolution, noise floor, or update rate.

28

Sensors limitation - 2
3) Sensors not fully specified: The AK8973 is an AKM magnetometer, which
is only 8-bits. Analyzing this data stream shows it is low-pass filtered. This
fact is not published on the phone or even the sensor datasheet. Many
sensors have characteristics not specified such as bias changes, non-uniform
gain, and skew (coupling between measurement axes). Algorithms that use
sensors without knowing these extra characteristics may produce incorrect
information.

4) Broken virtual sensors: The AKM sensor driver abstracts out an
orientation virtual sensor which is derived from the combination of two
sensors: the accelerometer and magnetometer. However, support for this
virtual sensor was dropped early on, so the TYPE_ORIENTATION
sensor is deprecated and the method SensorManager.getOrientation()
should be used instead. Furthermore, the new virtual sensors introduced in
Android 2.3 (Gingerbread) are not supported on all devices.

The sensor differences between just these two phones is substantial. So when
a developer is faced with writing apps utilizing sensors across as many
devices as possible, it is a daunting task.

Furthermore, the Android platform is not optimized for real-time sensor
data acquisition.

29

What can you do with
accelerometer and gyroscope?
http://www.starlino.com/imu_guide.html

“This guide is intended to everyone interested in inertial MEMS (Micro-Electro-
Mechanical Systems) sensors, in particular Accelerometers and Gyroscopes as
well as combination IMU devices (Inertial Measurement Unit).”
- what does an accelerometer measure
- what does a gyroscope (aka gyro) measure
- how to convert analog-to-digital (ADC) readings that you get from these sensor
to physical units (those would be g for accelerometer, deg/s for gyroscope)
- how to combine accelerometer and gyroscope readings in order to obtain
accurate information about the inclination of your device relative to the ground
plane

http://www.starlino.com/dcm_tutorial.html

30

Emulator limits
The emulator does not emulate sensors, so what can
you do without a physical device?

BUT…

There is an app that emulates many sensors, and that
you can use as data provider!

31

SensorSimulator
OpenIntents SensorSimulator lets you simulate sensor
events from accelerometer, compass, orientation,
temperature, light, proximity, pressure, linear acceleration,
gravity, gyroscope and rotation vector sensors.
Moreover, you can simulate your battery level and your
gps position too, using a telnet connection.

It transmits the simulated sensor data to an Android
emulator.
Also, it can record sensor data from an real Android device

See https://github.com/openintents/sensorsimulator

