
1

Sensors

Marco Ronchetti
Università degli Studi di Trento

2

Sensor categories
Motion sensors
•  measure acceleration forces and rotational forces

along three axes. This category includes
accelerometers, gravity sensors, gyroscopes.

Environmental sensors
•  measure various environmental parameters, such as

ambient air temperature and pressure, illumination,
and humidity. This category includes barometers,
photometers, and thermometers.

Position sensors
•  measure the physical position of a device. This

category includes orientation sensors and
magnetometers.

3

Basic code for managing sensors
 public class SensorActivity extends Activity, implements SensorEventListener {
 private final SensorManager sm;
 private final Sensor sAcc;
 public SensorActivity() {
 sm= (SensorManager)getSystemService(SENSOR_SERVICE);
 sAcc= sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 }
 protected void onPause() {
 super.onPause();
 sm.unregisterListener(this);
 }
 protected void onResume() {
 super.onResume();
 sm.registerListener(this, sAcc, SensorManager.SENSOR_DELAY_NORMAL);
 }
 public void onAccuracyChanged(Sensor sensor, int accuracy) { }
 public void onSensorChanged(SensorEvent event) { }
 }

4

SensorManager
SensorManager sm=Context.getSystemService(SENSOR_SERVICE);

List<Sensor> getSensorList(int type)
•  get the list of available sensors of a certain type. Sensor
Sensor getDefaultSensor(int type)
•  Use this method to get the default sensor for a given type

void registerListener(SensorEventListener listener, Sensor sensor, int rate)
•  Registers a SensorEventListener for the given sensor.
void unregisterListener(SensorEventListener listener, Sensor sensor)
•  Unregisters a listener for the sensors with which it is registered.
void unregisterListener(SensorEventListener listener)
•  Unregisters a listener for all sensors.

•  Some methods for transforming data (Vector to matrix representation etc.)

5

Sensor types
int constants of the Sensor class describing sensor
types:
TYPE_ACCELEROMETER
 TYPE_ALL A constant describing all sensor types.
TYPE_AMBIENT_TEMPERATURE
TYPE_GRAVITY
TYPE_GYROSCOPE
TYPE_LIGHT
TYPE_LINEAR_ACCELERATION
TYPE_MAGNETIC_FIELD
TYPE_PRESSURE
TYPE_PROXIMITY
TYPE_RELATIVE_HUMIDITY
TYPE_ROTATION_VECTOR
TYPE_STEP_COUNTER
TYPE_HEART_BEAT

6

Accelerometer
“Sensor's values are in meters/second^2 units. A sensor
measures the acceleration applied to the device. For this
reason, when the device is sitting on a table (and obviously
not accelerating), the accelerometer reads a magnitude of g
= 9.81 m/s^2. Similarly, when the device is in free-fall and
therefore dangerously accelerating towards to ground at
9.81 m/s^2, its accelerometer reads a magnitude of 0 m/
s^2.” (Android Developers – sensors)

7

Orientation sensor
“A compass is a navigational instrument for determining
direction relative to the Earth's magnetic poles. It
consists of a magnetized pointer (usually marked on the
North end) free to align itself with Earth's magnetic
field.” (Compass EN Wiki)
In Android's terminology it is called Orientation
sensor.

8

Gyroscope
“A gyroscope is an instrument consisting of a rapidly spinning
wheel so mounted as to use the tendency of such a wheel to
maintain a fixed position in space, and to resist any force which
tries to change it. The way it will move if a twisting force is
applied depends on the extent and orientation of the force and the
way the gyroscope is mounted. A free vertically spinning
gyroscope remains vertical as the carrying vehicle tilts, so
providing an artificial horizon. A horizontal gyroscope will
maintain a certain bearing, and therefore indicate a vessel's
heading as it turns. Modern gyroscopes (including those built-in
in smartphones) no longer have a spinning wheel.” (Gyroscope
Cambridge Encyclopedia)
“All values are in radians/second and measure the rate of
rotation around the X, Y and Z axis. The coordinate system is the
same as is used for the acceleration sensor.” (Android
Developers – sensors) Rotation is positive in the counter-
clockwise direction.

9

Sensor class
float getMaximumRange()
•  maximum range of the sensor in the sensor's unit.
int getMinDelay()
•  minimum delay allowed between two events in

microsecond or zero if this sensor only returns a value
when the data it's measuring changes

String getName()
float getPower()
•  the power in mA used by this sensor while in use
float getResolution()
•  resolution of the sensor in the sensor's unit.
int getType()
String getVendor()
int getVersion()

10

SensorManager sm= (SensorManager)getSystemService(SENSOR_SERVICE);
List<Sensor> sensorList = sm.getSensorList(Sensor.TYPE_ALL);
StringBuilder sensorString = new StringBuilder("Sensors:\n");
for(int i=0; i<sensorList.size(); i++) {
 sensorString.append(sensorList.get(i).getName()).append(", \n");
}

HTC EVO 4G
BMA150 3-axis Accelerometer
AK8973 3-axis Magnetic field sensor
AK8973 Orientation sensor
CM3602 Proximity sensor
CM3602 Light sensor

Samsung Nexus-S
KR3DM 3-axis Accelerometer
AK8973 3-axis Magnetic field sensor
AK8973 Orientation sensor
GP2A Light sensor
GP2A Proximity sensor
K3G Gyroscope sensor
Gravity Sensor
Linear Acceleration Sensor
Rotation Vector Sensor

11

Interface SensorEventListener
abstract void onAccuracyChanged(Sensor sensor, int
accuracy)
•  Called when the accuracy of a sensor has changed.
abstract void onSensorChanged(SensorEvent event)
•  Called when sensor values have changed.

12

Code examples
•  http://www.vogella.com/articles/AndroidSensor/

article.html accelerometer and compass examples

•  http://developer.android.com/guide/topics/
sensors/sensors_overview.html and following
pages

13

Sensors limitation - 1
From Jim Steele
Using available sensors in the Android platform: current
limitations and expected improvements

Comparing the sensors on these two phones demonstrates the
sensor fragmentation now found in Android:

1) Non-standard sensor availability: The Nexus-S has a
gyroscope (from ST Micro), but the EVO does not. In fact, most
Android devices do not have a gyroscope. There is no standard
availability of sensors across devices.

2) Non-standard sensor capability: The BMA150 is a Bosch
Sensortec 10-bit accelerometer, and the KR3DM is a ST Micro 12-
bit accelerometer (using a special part number). In fact, there is
no standard capability requirement for sensors across devices to
ensure consistent resolution, noise floor, or update rate.

14

Sensors limitation - 2
3) Sensors not fully specified: The AK8973 is an AKM magnetometer, which
is only 8-bits. Analyzing this data stream shows it is low-pass filtered. This
fact is not published on the phone or even the sensor datasheet. Many
sensors have characteristics not specified such as bias changes, non-uniform
gain, and skew (coupling between measurement axes). Algorithms that use
sensors without knowing these extra characteristics may produce incorrect
information.

4) Broken virtual sensors: The AKM sensor driver abstracts out an
orientation virtual sensor which is derived from the combination of two
sensors: the accelerometer and magnetometer. However, support for this
virtual sensor was dropped early on, so the TYPE_ORIENTATION
sensor is deprecated and the method SensorManager.getOrientation()
should be used instead..

The sensor differences between just these two phones is substantial. So when
a developer is faced with writing apps utilizing sensors across as many
devices as possible, it is a daunting task.

Furthermore, the Android platform is not optimized for real-time sensor
data acquisition.

15

What can you do with
accelerometer and gyroscope?
http://www.starlino.com/imu_guide.html

“This guide is intended to everyone interested in inertial MEMS (Micro-Electro-
Mechanical Systems) sensors, in particular Accelerometers and Gyroscopes as
well as combination IMU devices (Inertial Measurement Unit).”
- what does an accelerometer measure
- what does a gyroscope (aka gyro) measure
- how to convert analog-to-digital (ADC) readings that you get from these sensor
to physical units (those would be g for accelerometer, deg/s for gyroscope)
- how to combine accelerometer and gyroscope readings in order to obtain
accurate information about the inclination of your device relative to the ground
plane

http://www.starlino.com/dcm_tutorial.html

16

SensorSimulator
The Android Emulator (v25.2.2 and higher), launched with Android Studio
2.2 can simulate the following sensor types:

TYPE_ACCELEROMETER
TYPE_AMBIENT_TEMPERATURE
TYPE_GRAVITY
TYPE_GYROSCOPE
TYPE_LIGHT
TYPE_LINEAR_ACCELERATION
TYPE_MAGNETIC_FIELD
TYPE_ORIENTATION
TYPE_PRESSURE
TYPE_PROXIMITY
TYPE_RELATIVE_HUMIDITY
TYPE_ROTATION_VECTOR
TYPE_TEMPERATURE
As defined here: https://developer.android.com/guide/topics/sensors/
sensors_overview.html

17

Sensori esterni

18

Sensori esterni

19

Basic Animation

Marco Ronchetti
Università degli Studi di Trento

20

An example
Modified from an example by Vogella

Download the source from:
http://latemar.science.unitn.it/segue_userFiles/2012Mobile/Animation.zip

21

3 ways to do animation
•  Property Animation

•  lets you animate properties of any object, including ones
that are not rendered to the screen. The system is extensible
and lets you animate properties of custom types as well.

•  View Animation
•  An older system, can only be used for Views. It is relatively

easy to setup and offers enough capabilities to meet many
application's needs.

•  Drawable Animation
•  involves displaying Drawable resources one after another,

like a roll of film.
•  useful if you want to animate things that are easier to

represent with Drawable resources, such as a progression of
bitmaps

See https://developer.android.com/training/animation/overview

22

Example 1 – loading animation from xml
ImageView aniView = (ImageView) findViewById(R.id.imageView1);
Animation animation1 = AnimationUtils.loadAnimation

 (this,R.anim.myanimation);
aniView.startAnimation(animation1);

<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:shareInterpolator="true">
 <rotate android:fromDegrees="0”
 android:toDegrees="360"
 android:duration="5000"
 android:pivotX="50%”
 android:pivotY="90%"
 android:startOffset="0">
 </rotate>
</set>

23

Example 2 –animating from code
ImageView aniView = (ImageView) findViewById(R.id.imageView1);
ObjectAnimator animation1 = ObjectAnimator.ofFloat(aniView,

 "rotation", dest);
animation1.setDuration(2000);
animation1.start();

// Example of animation lifecycle trapping
animation1.setAnimationListener(new AnimationListener(){
 @Override
 public void onAnimationEnd(Animation animation) {…}
 @Override
 public void onAnimationRepeat (Animation animation) {…}
 @Override
 public void onAnimationStart (Animation animation) {…}
});

24

ObjectAnimator
static ObjectAnimator ofFloat(Object target, String
propertyName, float... values)
•  Constructs and returns an ObjectAnimator that

animates between float values.

public static ObjectAnimator ofFloat(T target,
Property<T, Float> property, float... values)
•  Animate a given (float) property in object target

ofInt is similar

25

Fading demo
float dest = 1;
if (aniView.getAlpha() > 0) {
 dest = 0;
}
ObjectAnimator animation3 = ObjectAnimator.ofFloat(aniView,"alpha", dest);
animation3.setDuration(2000);
animation3.start();

26

TypeEvaluator
Interface that implements:
public abstract T evaluate (float fraction, T startValue, T
endValue)

•  This function should return a linear interpolation

between the start and end values, given the fraction
parameter.

•  The calculation is expected to be simple parametric
calculation: result = x0 + t * (x1 - x0), where x0 is
startValue, x1 is endValue, and t is fraction.

27

ObjectAnimator
static ObjectAnimator ofObject(Object target, String
propertyName, TypeEvaluator evaluator, Object...
values)
•  Constructs and returns an ObjectAnimator that

animates between Object values.
•  .
static <T, V> ObjectAnimator ofObject(T target,
Property<T, V> property, TypeEvaluator<V>
evaluator, V... values)
Constructs and returns an ObjectAnimator that
animates a given property between Object values.

28

AnimatorSet: combining animations
Since Android 3.0

void playSequentially(Animator... items)
void playTogether(Animator... items)
void start()
void end()

AnimatorSet.Builder play(Animator anim)
•  This method creates a Builder object, which is used

to set up playing constraints.

29

AnimatorSet.Builder
AnimatorSet.Builder after(Animator anim)
•  anim starts when player ends.
AnimatorSet.Builder after(long delay)
•  Start player after specified delay.
AnimatorSet.Builder before(Animator anim)
•  start player when anim ends.
AnimatorSet.Builder with(Animator anim)
•  Starts player and anim at the same time.

30

AnimatorSet: coreography
ObjectAnimator fadeOut = ObjectAnimator.ofFloat(aniView, "alpha”, 0f);
fadeOut.setDuration(2000);

ObjectAnimator mover = ObjectAnimator.ofFloat(aniView,

 "translationX", -500f, 0f);
mover.setDuration(2000);

ObjectAnimator fadeIn = ObjectAnimator.ofFloat(aniView, "alpha”,1f);
fadeIn.setDuration(2000);

AnimatorSet animatorSet = new AnimatorSet();
animatorSet.play(mover).with(fadeIn).after(fadeOut);
animatorSet.start();

31

Example
See the example in the zip file connected with this
lecture:

See how the game behaves when rotating the device
with and without onSaveInstanceState and
onRestoreInstanceState

32

Physics based animation and
layout changes animation

https://developer.android.com/training/
animation/overview#physics-based

