
1 

Sensors 
 
 
Marco Ronchetti 
Università degli Studi di Trento 



2 

Sensor categories 
Motion sensors  
•  measure acceleration forces and rotational forces 

along three axes. This category includes 
accelerometers, gravity sensors, gyroscopes. 

Environmental sensors  
•  measure various environmental parameters, such as 

ambient air temperature and pressure, illumination, 
and humidity. This category includes barometers, 
photometers, and thermometers. 

Position sensors  
•  measure the physical position of a device. This 

category includes orientation sensors and 
magnetometers. 

 



3 

Basic code for managing sensors 
 public class SensorActivity extends Activity, implements SensorEventListener { 
     private final SensorManager sm; 
     private final Sensor sAcc; 
     public SensorActivity() { 
         sm= (SensorManager)getSystemService(SENSOR_SERVICE); 
         sAcc= sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); 
     } 
     protected void onPause() { 
         super.onPause(); 
         sm.unregisterListener(this); 
     } 
     protected void onResume() { 
         super.onResume(); 
         sm.registerListener(this, sAcc, SensorManager.SENSOR_DELAY_NORMAL); 
     } 
     public void onAccuracyChanged(Sensor sensor, int accuracy) { } 
     public void onSensorChanged(SensorEvent event) { }      
 } 
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SensorManager 
SensorManager sm=Context.getSystemService(SENSOR_SERVICE); 
 
List<Sensor> getSensorList(int type) 
•  get the list of available sensors of a certain type. Sensor  
Sensor getDefaultSensor(int type) 
•  Use this method to get the default sensor for a given type 

void registerListener(SensorEventListener listener, Sensor sensor, int rate) 
•  Registers a SensorEventListener for the given sensor. 
void unregisterListener(SensorEventListener listener, Sensor sensor) 
•  Unregisters a listener for the sensors with which it is registered. 
void unregisterListener(SensorEventListener listener) 
•  Unregisters a listener for all sensors. 

•  Some methods for transforming data (Vector to matrix representation etc.) 
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Sensor types 
int constants of the Sensor class describing sensor 
types: 
TYPE_ACCELEROMETER 
 TYPE_ALL  A constant describing all sensor types. 
TYPE_AMBIENT_TEMPERATURE   
TYPE_GRAVITY   
TYPE_GYROSCOPE   
TYPE_LIGHT   
TYPE_LINEAR_ACCELERATION   
TYPE_MAGNETIC_FIELD   
TYPE_PRESSURE   
TYPE_PROXIMITY   
TYPE_RELATIVE_HUMIDITY   
TYPE_ROTATION_VECTOR 
TYPE_STEP_COUNTER 
TYPE_HEART_BEAT 
 



6 

Accelerometer 
“Sensor's values are in meters/second^2 units. A sensor 
measures the acceleration applied to the device. For this 
reason, when the device is sitting on a table (and obviously 
not accelerating), the accelerometer reads a magnitude of g 
= 9.81 m/s^2. Similarly, when the device is in free-fall and 
therefore dangerously accelerating towards to ground at 
9.81 m/s^2, its accelerometer reads a magnitude of 0 m/
s^2.” (Android Developers – sensors) 
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Orientation sensor 
“A compass is a navigational instrument for determining 
direction relative to the Earth's magnetic poles. It 
consists of a magnetized pointer (usually marked on the 
North end) free to align itself with Earth's magnetic 
field.” (Compass EN Wiki) 
In Android's terminology it is called Orientation 
sensor. 
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Gyroscope 
“A gyroscope is an instrument consisting of a rapidly spinning 
wheel so mounted as to use the tendency of such a wheel to 
maintain a fixed position in space, and to resist any force which 
tries to change it. The way it will move if a twisting force is 
applied depends on the extent and orientation of the force and the 
way the gyroscope is mounted. A free vertically spinning 
gyroscope remains vertical as the carrying vehicle tilts, so 
providing an artificial horizon. A horizontal gyroscope will 
maintain a certain bearing, and therefore indicate a vessel's 
heading as it turns. Modern gyroscopes (including those built-in 
in smartphones) no longer have a spinning wheel.” (Gyroscope 
Cambridge Encyclopedia) 
“All values are in radians/second and measure the rate of 
rotation around the X, Y and Z axis. The coordinate system is the 
same as is used for the acceleration sensor.” (Android 
Developers – sensors) Rotation is positive in the counter- 
clockwise direction. 
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Sensor class 
float   getMaximumRange() 
•  maximum range of the sensor in the sensor's unit. 
int   getMinDelay() 
•   minimum delay allowed between two events in 

microsecond or zero if this sensor only returns a value 
when the data it's measuring changes 

String  getName() 
float   getPower() 
•  the power in mA used by this sensor while in use 
float   getResolution() 
•  resolution of the sensor in the sensor's unit. 
int   getType() 
String  getVendor() 
int   getVersion() 
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SensorManager sm= (SensorManager)getSystemService(SENSOR_SERVICE); 
List<Sensor> sensorList = sm.getSensorList(Sensor.TYPE_ALL); 
StringBuilder sensorString = new StringBuilder("Sensors:\n"); 
for(int i=0; i<sensorList.size(); i++) { 
     sensorString.append(sensorList.get(i).getName()).append(", \n"); 
} 

HTC EVO 4G  
BMA150 3-axis Accelerometer 
AK8973 3-axis Magnetic field sensor 
AK8973 Orientation sensor 
CM3602 Proximity sensor 
CM3602 Light sensor 

Samsung Nexus-S 
KR3DM 3-axis Accelerometer 
AK8973 3-axis Magnetic field sensor 
AK8973 Orientation sensor 
GP2A Light sensor 
GP2A Proximity sensor 
K3G Gyroscope sensor 
Gravity Sensor 
Linear Acceleration Sensor 
Rotation Vector Sensor 
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Interface SensorEventListener 
abstract void onAccuracyChanged(Sensor sensor, int 
accuracy) 
•  Called when the accuracy of a sensor has changed. 
abstract void onSensorChanged(SensorEvent event) 
•  Called when sensor values have changed. 
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Code examples 
•  http://www.vogella.com/articles/AndroidSensor/

article.html accelerometer and compass examples 

•  http://developer.android.com/guide/topics/
sensors/sensors_overview.html and following 
pages 
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Sensors limitation - 1 
From Jim Steele 
Using available sensors in the Android platform: current 
limitations and expected improvements 
 
 
Comparing the sensors on these two phones demonstrates the 
sensor fragmentation now found in Android: 
 
1) Non-standard sensor availability: The Nexus-S has a 
gyroscope (from ST Micro), but the EVO does not. In fact, most 
Android devices do not have a gyroscope. There is no standard 
availability of sensors across devices. 
 
2) Non-standard sensor capability: The BMA150 is a Bosch 
Sensortec 10-bit accelerometer, and the KR3DM is a ST Micro 12-
bit accelerometer (using a special part number). In fact, there is 
no standard capability requirement for sensors across devices to 
ensure consistent resolution, noise floor, or update rate. 
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Sensors limitation - 2 
3) Sensors not fully specified: The AK8973 is an AKM magnetometer, which 
is only 8-bits. Analyzing this data stream shows it is low-pass filtered. This 
fact is not published on the phone or even the sensor datasheet. Many 
sensors have characteristics not specified such as bias changes, non-uniform 
gain, and skew (coupling between measurement axes). Algorithms that use 
sensors without knowing these extra characteristics may produce incorrect 
information. 
 
4) Broken virtual sensors: The AKM sensor driver abstracts out an 
orientation virtual sensor which is derived from the combination of two 
sensors: the accelerometer and magnetometer. However, support for this 
virtual sensor was dropped early on, so the TYPE_ORIENTATION 
sensor is deprecated and the method SensorManager.getOrientation() 
should be used instead.. 
 
The sensor differences between just these two phones is substantial. So when 
a developer is faced with writing apps utilizing sensors across as many 
devices as possible, it is a daunting task. 
 
Furthermore, the Android platform is not optimized for real-time sensor 
data acquisition. 
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What can you do with 
accelerometer and gyroscope? 
http://www.starlino.com/imu_guide.html 
 
 
“This guide is intended to everyone interested in inertial MEMS (Micro-Electro-
Mechanical Systems) sensors, in particular Accelerometers and Gyroscopes as 
well as combination IMU devices (Inertial Measurement Unit).” 
- what does an accelerometer measure 
- what does a gyroscope (aka gyro) measure  
- how to convert analog-to-digital (ADC) readings that you get from these sensor 
to physical units (those would be g for accelerometer, deg/s for gyroscope) 
- how to combine accelerometer and gyroscope readings in order to obtain 
accurate information about the inclination of your device relative to the ground 
plane 

http://www.starlino.com/dcm_tutorial.html 
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SensorSimulator  
The Android Emulator (v25.2.2 and higher), launched with Android Studio 
2.2 can simulate the following sensor types: 
 
TYPE_ACCELEROMETER 
TYPE_AMBIENT_TEMPERATURE 
TYPE_GRAVITY 
TYPE_GYROSCOPE 
TYPE_LIGHT 
TYPE_LINEAR_ACCELERATION 
TYPE_MAGNETIC_FIELD 
TYPE_ORIENTATION 
TYPE_PRESSURE 
TYPE_PROXIMITY 
TYPE_RELATIVE_HUMIDITY 
TYPE_ROTATION_VECTOR 
TYPE_TEMPERATURE 
As defined here: https://developer.android.com/guide/topics/sensors/
sensors_overview.html 
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Sensori esterni 
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Sensori esterni 
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An example 
Modified from an example by Vogella 
 
 
 
 
 
 
 
 
 
Download the source from: 
http://latemar.science.unitn.it/segue_userFiles/2012Mobile/Animation.zip 

 



21 

3 ways to do animation 
•  Property Animation  

•  lets you animate properties of any object, including ones 
that are not rendered to the screen. The system is extensible 
and lets you animate properties of custom types as well. 

•  View Animation 
•  An older system, can only be used for Views. It is relatively 

easy to setup and offers enough capabilities to meet many 
application's needs. 

•  Drawable Animation 
•  involves displaying Drawable resources one after another, 

like a roll of film.  
•  useful if you want to animate things that are easier to 

represent with Drawable resources, such as a progression of 
bitmaps 

See https://developer.android.com/training/animation/overview 
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Example 1 – loading animation from xml 
ImageView aniView = (ImageView) findViewById(R.id.imageView1); 
Animation animation1 = AnimationUtils.loadAnimation

 (this,R.anim.myanimation); 
aniView.startAnimation(animation1); 

 
<set xmlns:android="http://schemas.android.com/apk/res/android"   
    android:shareInterpolator="true">   
    <rotate android:fromDegrees="0” 
        android:toDegrees="360"   
        android:duration="5000"  
        android:pivotX="50%” 
        android:pivotY="90%"   
        android:startOffset="0">   
    </rotate>   
</set>  
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Example 2 –animating from code 
ImageView aniView = (ImageView) findViewById(R.id.imageView1); 
ObjectAnimator animation1 = ObjectAnimator.ofFloat(aniView, 

  "rotation", dest); 
animation1.setDuration(2000); 
animation1.start(); 
 
// Example of animation lifecycle trapping 
animation1.setAnimationListener(new AnimationListener(){ 
    @Override 
     public void onAnimationEnd(Animation animation) {…} 
 @Override 
     public void onAnimationRepeat (Animation animation) {…} 
 @Override 
     public void onAnimationStart (Animation animation) {…}    
}); 
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ObjectAnimator 
static ObjectAnimator ofFloat(Object target, String 
propertyName, float... values) 
•  Constructs and returns an ObjectAnimator that 

animates between float values. 

public static ObjectAnimator ofFloat(T target, 
Property<T, Float> property, float... values)  
•  Animate a given (float) property in object target 

ofInt is similar 
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Fading demo 
float dest = 1; 
if (aniView.getAlpha() > 0) { 
    dest = 0; 
} 
ObjectAnimator animation3 = ObjectAnimator.ofFloat(aniView,"alpha", dest); 
animation3.setDuration(2000); 
animation3.start(); 
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TypeEvaluator 
Interface that implements: 
public abstract T evaluate (float fraction, T startValue, T 
endValue) 
 
•  This function should return a linear interpolation 

between the start and end values, given the fraction 
parameter.  

•  The calculation is expected to be simple parametric 
calculation: result = x0 + t * (x1 - x0), where x0 is 
startValue, x1 is endValue, and t is fraction. 
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ObjectAnimator 
static ObjectAnimator ofObject(Object target, String 
propertyName, TypeEvaluator evaluator, Object... 
values) 
•  Constructs and returns an ObjectAnimator that 

animates between Object values. 
•  . 
static <T, V> ObjectAnimator ofObject(T target, 
Property<T, V> property, TypeEvaluator<V> 
evaluator, V... values) 
Constructs and returns an ObjectAnimator that 
animates a given property between Object values. 
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AnimatorSet: combining animations 
Since Android 3.0 
 
void playSequentially(Animator... items) 
void playTogether(Animator... items) 
void start() 
void end() 
 
AnimatorSet.Builder play(Animator anim) 
•  This method creates a Builder object, which is used 

to set up playing constraints. 
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AnimatorSet.Builder 
AnimatorSet.Builder after(Animator anim) 
•  anim starts when player ends. 
AnimatorSet.Builder after(long delay) 
•  Start player after specified delay. 
AnimatorSet.Builder before(Animator anim) 
•  start player when anim ends. 
AnimatorSet.Builder with(Animator anim) 
•  Starts player and anim at the same time. 
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AnimatorSet: coreography  
ObjectAnimator fadeOut = ObjectAnimator.ofFloat(aniView, "alpha”, 0f); 
fadeOut.setDuration(2000); 
 
ObjectAnimator mover = ObjectAnimator.ofFloat(aniView, 

 "translationX", -500f, 0f);  
mover.setDuration(2000); 
 
ObjectAnimator fadeIn = ObjectAnimator.ofFloat(aniView, "alpha”,1f); 
fadeIn.setDuration(2000); 
 
AnimatorSet animatorSet = new AnimatorSet(); 
animatorSet.play(mover).with(fadeIn).after(fadeOut); 
animatorSet.start(); 
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Example 
See the example in the zip file connected with this 
lecture: 
 
 
 
 
 
 
 
 
See how the game behaves when rotating the device 
with and without onSaveInstanceState and 
onRestoreInstanceState 
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Physics based animation and 
layout changes animation  

https://developer.android.com/training/
animation/overview#physics-based 
 


