Short & Quick messages:
Toast

Marco Ronchetti
Universita degli Studi di Trento

Toast

A toast is a view containing a quick little message for
the user (shown for a time interval).

When the view is shown to the user, appears as a
floating view over the application. It will never receive
focus.

It is as unobtrusive as possible, while still showing the
user the information you want them to see.

setGravity(), setDuration(), set Text(), view()

Threads

Marco Ronchetti
Universita degli Studi di Trento

Threads

When an application is launched, the system creates a thread of
execution for the application, called "main” or “UI thread”

This thread dispatches events to the user interface widgets, and
draws (uses the android.widget and android.view packages).

Unlike Java AWT/Swing, separate threads are NOT created
automatically.

Methods that respond to system callbacks (such as onKeyDown() to

report user actions or a lifecycle callback method) always run in the
Ul thread.

If everything is happening in the Ul thread, performing lon
operations such as network access or database queries will block the
whole UL. When the thread is blocked, no events can be dispatched,
including drawing events. From the user's perspective, the
application appears to hang.

If the UI thread is blocked for more than 5 sec the user is presented
with the” ANR - application not responding” dialog.

P |

-
[N 5
() e ad

the Andoid Ul toolkit is not thread-safe !

Consequence:

you must not manipulate your Ul from a worker
thread — all manipulation to the user interface must be
done within the UI thread.

You MUST respect these rules:
Do not block the UI thread

Do not access the Android UI toolkit from outside
the Ul thread

An example from android developers

public void onClick(View v) { WRONG!
Bitmap b = loadImageFromNetwork(

Potentiall
"http;//example.com/image.png"); e Slow ’
Operation!

mylmageView.setlImageBitmap(b);

public void onClick(View v) {

new Thread(new Runnable() |
public void run() {
Bitmap b = loadImageFromNetwork(
"http://example.com/image.png");
myImageView.setImageBitmap(b); WRONG!
. - A non Ul thread

accesses the Ul!

.start();

Still not the solution...

public void onClick(View v) {
Bitmap b;

new Thread(new Runnable() {
public void run() {
b = loadImageFromNetwork(

"http://example.com/image.png");
D

start(); WRONG!
myImageView.setimageBitmap(b); - This does not wait for the

thread to finish!

public boolean post (Runnable action)
e Causes the Runnable to be sent to the Ul thread and to be run
therein. It is invoked on a View from outside of the Ul thread.

public boolean postDelayed (Runnable action, long delayMillis)

public void onClick(View v) {

new Thread(new Runnable() {
public void run() {
Bitmap b = loadImageFromNetwork(

"http://example.com/image.png");

mylmageView.post(
new Runnable() {
public void run() { OK! This code will
mImageView.setImageBitmap(b); @ be runin
\ } the Ul thread
)
.start();

| SN

Java reminder: varargs

void {(String pattern, Object... arguments);

The three periods after the final parameter's type
indicate that the final argument may be passed

das an array or

das a sequence of arguments.

Varargs can be used only in the final argument
position.
Object a, b, ¢, d[10];

f(*nello”,d);
f(*nello”,a,b,c);

Varargs example

public class Test {
public static void main(String args[]){ new Test(); }

Test(){
String k[]={"uno","due","tre"};
f("hello" k);
f("hello",”alpha”,“beta”);
// £("hello”,“alpha”,“beta” k); THIS DOES NOT WORK!

void f(String s, String... d){
System.out.println(d.length);
for (String k:d) {

System.out.println(k);

AsyncTask<Params,Progress,Result>

Creates a new asynchronous task. The constructor
must be invoked on the UI thread.

AsyncTask must be subclassed, and instantiated in the
UI thread.

Methods to be overridden:

void onPreExecute() Ul Thread before
Result doinBackground(Parames...) Separate new

thread during
void onProgressUpdate(Progress...) Ul Thread

£, void onPostExecute (Result) Ul Thread after

A simpler and more elegant solution

public void onClick(View v) {
new DownloadImageTask().execute("http://example.com/image.png");

}

private class DownloadImageTask extends AsyncTask<String, Void, Bitmap> { |
protected Bitmap doInBackground(String... urls) {
return loadImageFromNetwork(urls[0]);

}

protected void onPostExecute(Bitmap result) {
mlImageView.setimageBitmap(result);

}

}

package it.unitn.science.latemar;
import ...

public class AsyncDemoActivity extends ListActivity {

private static final String[] item{"uno","due","tre","quattro",
"cinque","sei”, "sette","otto","nove",

"dieci","undici","dodici",};

. AsyncDemo

@QOverride

public void onCreate(Bundle savedInstanceState) { e
super.onCreate(savedInstanceState); due
ListView listView = getListView(); tre

quattro

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
new ArrayList<String>()));

new AddStringTask().execute();

} Adapted from the source code of

r

Using Progress

\1, This is an inner class!

class AddStringTask extends AsyncTask<Void, String, Void> {
@Override
protected Void doInBackground(Void... unused) {

for (String item : items) { @Override
publishProgress(item); protected void onPostExecute(Void unused) {
SystemClock.sleep(1000); Toast
) .makeText(AsyncDemoActivity.this,
"Done!", Toast. LENGTH_SHORT)
return(null); .
.show();

} }
@SuppressWarnings("unchecked") }

@Qverride }

protected void onProgressUpdate(String... item) {
((ArrayAdapter<String>)getListAdapter()).add(item[0]);

. AsyncDemo

Hello World, AsyncDemoActivity!

L

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http.,/schemas.android.com/apk/res/android"
android:layout_width="fill parent"

android:layout_height="fill_parent" public class AsyncDemoActivity?2
android:orientation="vertical" > extends Activity {
ProgressBar pb;
<TextView @Override
android:layout_width="fill_parent" public void onCreate(Bundle state) {
android:layout_height="wrap_content" super.onCreate(state);
android:text="@string/hello" /> setContentView(R.layout.main);
<ProgressBar pb=(ProgressBar) findViewById(R.id.pb1);
android:id="@+id/pb1" new AddStringTask().execute();
android:max="10" }

android:layout_width="fill parent"

android:layout_height="wrap_content"

style="@android:style/Widget.ProgressBar.Horizontal"

android:layout_marginRight="5dp" />
</LinearLayout>

r @@\

Using the ProgressBar

class AddStringTask extends AsyncTask<Void, Integer, Void> {
@Override
protected void doInBackground(Void... unused) {
int item=0;
while (item<10){
publishProgress(++item);
SystemClock.sleep(1000);

}

}
@QOverride

protected void onProgressUpdate(Integer... item) {
pb.setProgress(item[0]);

}

}

Application Context

Marco Ronchetti
Universita degli Studi di Trento

The Context

An interface to global information about an
application environment.

It allows accessing application-specific resources and
classes, as well as up-calls for application-level
operations such as launching activities, broadcasting
and receiving intents, etc.

[LN/

We have seen it in various cases:
Activity is subclass of Context
new Intent(Context c, Class c);
isIntentAvailable(Context context, String action)

A global Application Context

Is there a simple way to maintain and access the application context
from everywhere it’s needed?

a) Modify the Android Manifest adding the “name” parameter to the

application tag
<application android:name="myPackage. MyApplication”> ...
</application> , o o
public class MyApplication extends Application{
private static Context context;
public void onCreate(){
super.onCreate();
b) Write the class My Application.context = getApplicationContext();
}

public static Context getAppContext() {
return MyApplication.context;

}
}

c) Access MyApplication.getAppContext() to get your application
Pe context statically from eveywhere.

Fragments

Fragments

A fragment is a self-contained, modular section of an
application’s user interface and corresponding behavior
that can be embedded within an activity.

Fragments can be assembled to create an activity during
the application design phase, and added to, or removed

from an activity during application runtime to create a
dynamically changing user interface.

\ Ve

Fragments may only be used as part of an activity and
cannot be instantiated as standalone application elements.

oA fragment can be thought of as a functional “sub-activity”
ith its own lifecycle similar to that of a full activity.

SMOoM

Fragments lifecycle
Method Description
The fragment instance is associated with an activity instance.The activity is not
onAttach() e
yet fully initialized
onCreate() Fragment is created
. The fragment instance creates its view hierarchy. The inflated views become part
onCreateView() X i
of the view hierarchy of its containing activity.
Activity and fragment instance have been created as well as thier view hierarchy.
onActivityCreated() | At this point, view can be accessed with the £indViewById () method.
example.
onResume() Fragment becomes visible and active.
onPause() Fragment is visibile but becomes not active anymore, e.g., if another activity is
animating on top of the activity which contains the fragment.
onStop() Fragment becomes not visible.

1‘.
i)

Defining a new fragment (from code)

To define a new fragment you either extend the
android.app.Fragment class or one of its subclasses, for
example,

ListFragment,

DialogFragment,

PreferenceFragment

- WebViewFragment.

Defining a new fragment (from code)

public class DetailFragment extends Fragment ({

@Override

public View onCreateView (LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) ({

View view=inflater.inflate(

R.layout. fragment rssitem detail,
container, false);
return view;
}
public void setText(String item) ({
TextView view = (TextView)
getView() .findViewById(R.id.detailsText) ;

view.setText (item) ;

XML-based fragments

<RelativeLayout xmlns:android="http://schemas.android.com/
apk/res/android" xmlns:tools="http://schemas.android.com/
tools" android:layout width="match parent"

android:layout height="match parent"
tools:context=".FragmentDemoActivity" >

<fragment android:id="@+id/fragment one"
android:name="com.example.myfragmentdemo.FragmentOne"

android:layout width="match parent"

android:layout height="wrap content"”

android:layout alignParentLeft="true"

android:layout centerVertical="true" tools:layout="@layout/
fragment one layout" />

</Relativelayout>

Adding-removing fragments at
runtime

The FragmentManager class and the FragmentTransaction class allow
you to add, remove and replace fragments in the layout of your
activity.

Fragments can be dynamically modified via transactions. To
dynamically add fragments to an existing layout C}lfou typically define a
container in the XML layout file in which you add a Fragment.

FragmentTransaction ft =
getFragmentManager () .beginTransaction() ;
ft.replace(R.id.your placehodler, new
YourFragment()) ;

ft.commit () ;

A new Fmﬁment will replace an existing Fragment that was previously
added to the container.

Finding if a fragment is already part
of your Activity

DetailFragment fragment = (DetailFragment)
getFragmentManager () .
findFragmentById(R.id.detail frag);

if (fragment==null) {

// start new Activity
} else {

fragment.update(...);

}

Communication: activity -> fragment

In order for an activity to communicate with a
fragment, the activity must identity the fragment
object via the ID assigned to it using the

find ViewByld() method.

Once this reference has been obtained, the activity can
simply call the public methods of the fragment object.

Communication: fragment-> activity

Communicating in the other direction (from fragment to
activity) is a little more complicated.

A) the fragment must define a listener interface, which is

then implemented within the activity class.
public class MyFragment extends Fragment {
Alistener activityCallback;
public interface AListener {
public void someMethod(int parl, String par2);

Communication: fragment-> activity

B. the onAttach() method of the fragment class needs to be
overridden and implemented. The method is passed a
reference to the activity in which the fragment is
contained. The method must store a local reference to
this activity and verity that it implements the interface.

public void onAttach (Activity activity) {
super .onAttach (activity) ;
try { activityCallback = (AListener) activity;
} catch (ClassCastException e) {

throw new ClassCastException (
activity.toString()
+ " must implement AListener");

Communication: fragment-> activity

C. The next step is to call the callback method of the
activity from within the fragment. For example, the
following code calls the callback method on the
activity when a button is clicked:

public void buttonClicked (View view) ({
activityCallback.someMethod (argl, arg2) ;

}

Communication: fragment-> activity

All that remains is to modify the activity class so that
it implements theAListener interface.

public class MyActivity extends
FragmentActivity implements
MyFragment.AListener ({

public void someMethod (String argl, int arg2?)
{
// Implement code for callback method

}

Esempio

vedi
http:/ /www.vogella.com/tutorials/
AndroidFragments/article.html

sez. 10

