
1

Preferences

Marco Ronchetti
Università degli Studi di Trento

2

SharedPreferences
SharedPreferences allows to save and retrieve
persistent key-value pairs of primitive data types. This
data will persist across user sessions (even if your
application is killed).

 getSharedPreferences(String name, int mode)
- Uses multiple preferences files identified by name, which you specify
with the first parameter.

 getPreferences()
- Use this if you need only one preferences file for your Activity. This
simply calls the underlying getSharedPreferences(String, int) method by
passing in this activity's class name as the preferences name

A method
of Contex

A method
of Activity

3

SharedPreferences methods
boolean contains(String key)
Checks whether the preferences contains a preference.

T getT(String key, T defValue)
 Retrieve a T value from the preferences where T={int,
float, boolean, long, String, Set<String>}.

SharedPreferences.Editor edit()
All changes you make in an editor are batched, and
not copied back to the original SharedPreferences until
you call commit() or apply()

Value returned
If key does not exist

4

SharedPreferences.Editor methods
Void apply(), boolean commit()
Commit your preferences changes back (apply is
asynchronous)

Editor putT(String key)
 Stores a T value in the preferences where T={int, float,
boolean, long, String, Set<String>}.

Editor remove(String key)
Mark in the editor that a preference value should be
removed

Editor clear ()
Mark in the editor that all preference values should be
removed

5

User Preferences
Shared preferences are not strictly for saving "user
preferences," such as what ringtone a user has chosen.

For creating user preferences for your application, you
should use PreferenceActivity, which provides an
Activity framework for you to create user preferences,
which will be automatically persisted (using shared
preferences).

It is based on Fragments

6

Notification

Marco Ronchetti
Università degli Studi di Trento

7

Notification Bar

PULL
DOWN

8

SimpleNotification
public class SimpleNotification extends Activity {
 private NotificationManager nm;
 private int SIMPLE_NOTIFICATION_ID;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 nm = (NotificationManager)getSystemService(NOTIFICATION_SERVICE);
 final Notification notifyDetails = new Notification(

 R.drawable.android,"New Alert, Click Me!",
 System.currentTimeMillis());

 Button cancel = (Button)findViewById(R.id.cancelButton);
 cancel.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {

 nm.cancel(SIMPLE_NOTIFICATION_ID);
 }});}

Adapted from http://saigeethamn.blogspot.it

9

SimpleNotification – part 2
 Button start = (Button)findViewById(R.id.notifyButton);
 start.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {

 Context context = getApplicationContext();
 CharSequence contentTitle = "Notification Details...";

 CharSequence contentText = "Browse Android Site by clicking me";
 Intent notifyIntent = new Intent
 (android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.android.com"));
 PendingIntent intent =

 PendingIntent.getActivity(SimpleNotification.this, 0, notifyIntent,
 android.content.Intent.FLAG_ACTIVITY_NEW_TASK);

 notifyDetails.setLatestEventInfo(context, contentTitle,
 contentText, intent);

 nm.notify(SIMPLE_NOTIFICATION_ID, notifyDetails);
 }
 });
 }}

10

More on Intents

Marco Ronchetti
Università degli Studi di Trento

11

Intents
An Android Intent is an object carrying an intent, i.e. a
message from one component to another component
either inside or outside of the application. Intents can
communicate messages among any of the three core
components of an application -- Activities, Services,
and BroadcastReceivers.

The intent itself, an Intent object, is a passive data
structure. It holds an abstract description of an
operation to be performed.

12

Explicit vs. implicit Intents
// Explicit Intent by specifying its class name
 Intent i = new Intent(this, TargetActivity.class);
 i.putExtra("Key1", "ABC");
 i.putExtra("Key2", "123");

// Starts TargetActivity
 startActivity(i);

// Implicit Intent by specifying a URI
 Intent i = new Intent(Intent.ACTION_VIEW,
 Uri.parse("http://www.example.com"));

// Starts Implicit Activity
 startActivity(i);

13

Pending Intents
A PendingIntent is a token that you give to a foreign
application (e.g. NotificationManager, AlarmManager,
Home Screen AppWidgetManager, or other 3rd party
applications), which allows the foreign application to use
your application's permissions to execute a predefined
piece of code.

By giving a PendingIntent to another application, you are
granting it the right to perform the operation you have
specified as if the other application was yourself (with the
same permissions and identity).

An important difference between Intent and PendingIntent
is that by using the first, you want to start / launch /
execute something NOW, while by using the second entity
you want to execute that something in the future.

14

Explicit vs. implicit Intents
public static PendingIntent getActivity (Context context,
 int requestCode,
 Intent intent,
 int flags)

Retrieve a PendingIntent that will start a new activity,
 like calling Context#startActivity(Intent).

Note that the activity will be started outside of the
context of an existing activity, so you must use the
Intent#FLAG_ACTIVITY_NEW_TASK launch flag in the Intent.

15

Broadcast receivers

Marco Ronchetti
Università degli Studi di Trento

16

Bradcast receiver
A component that responds to system-wide broadcast
announcements.
Many broadcasts originate from the system—for example, a
broadcast announcing that the screen has turned off, the
battery is low, or a picture was captured.

Applications can initiate broadcasts—e.g. to let other
applications know that some data has been downloaded to
the device and is available for them to use.

Broadcast receivers don't display a user interface, but they
can crate a status bar notification. More commonly, a
broadcast receiver is just a "gateway" to other components
and is intended to do a very minimal amount of work e.g. it
might initiate a service.

17

Broadcast receiver

>adb shell
date +%s
1332793443
date -s +%s 1332793443
time 1332793443 -> 1332793443.0
settimeofday failed Invalid argument

public class MyBroadcastReceiver extends BroadcastReceiver {
 …
 public void onReceive(Context context, Intent intent) {

 …
 }
}

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package=”…I” android:versionCode=”1” android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <receiver android:name=".MyBroadcastReceiver">

 <intent-filter>
 <action android:name="android.intent.action.TIME_SET”/>
 </intent-filter>

 </receiver>
 </application>
 <uses-sdk android:minSdkVersion="13" />
</manifest>

Adapted from saigeethamn.blogspot.it

18

Broadcast receiver
public class MyBroadcastReceiver extends BroadcastReceiver {
 private NotificationManager nm;
 private int SIMPLE_NOTIFICATION_ID;

 @Override
 public void onReceive(Context context, Intent intent) {
 nm = (NotificationManager) context.getSystemService

 (Context.NOTIFICATION_SERVICE);
 Notification n= new Notification(R.drawable.android,"Time Reset!",

 System.currentTimeMillis());
 PendingIntent myIntent = PendingIntent.getActivity(context, 0,

 new Intent(Intent.ACTION_VIEW, People.CONTENT_URI), 0);
 n.setLatestEventInfo(context, "Time has been Reset",

 "Click on me to view Contacts", myIntent);
 n|= Notification.FLAG_AUTO_CANCEL;
 n|= Notification.DEFAULT_SOUND;
 nm.notify(SIMPLE_NOTFICATION_ID, n);
 Log.i(getClass().getSimpleName(),"Sucessfully Changed Time");
 }
}

Adapted from saigeethamn.blogspot.it

19

Sending broadcast events
(in Context)
sendBroadcast (Intent intent, String

 receiverPermission)
Broadcast the given intent to all interested
BroadcastReceivers, allowing an optional required
permission to be enforced.

This call is asynchronous; it returns immediately, and
you will continue executing while the receivers are
run.
No results are propagated from receivers and receivers
can not abort the broadcast.

20

Sending ordered broadcast events
(in Context)
sendOrderedBroadcast (Intent intent, String

 receiverPermission)
Broadcast the given intent to all interested
BroadcastReceivers, delivering them one at a time to
allow more preferred receivers to consume the
broadcast before it is delivered to less preferred
receivers.

This call is asynchronous; it returns immediately, and
you will continue executing while the receivers are
run.

21

LocalBroadcastManager
Helper to register for and send broadcasts of Intents to local
objects within your process.

Advantages of Local vs Global B.M.:
•  the data you are broadcasting will not leave your app

•  (you don't need to worry about leaking private data).

•  it is not possible for other applications to send these
broadcasts to your app
•  (you don't need to worry about having security holes)

•  it is more efficient than sending a global broadcast
through the system.

22

Content Providers

Marco Ronchetti
Università degli Studi di Trento

23

Content Provider
A standard interface connecting a running process with data in another process

Manages access to a structured set of data:
•  encapsulate the data
•  provide mechanisms for defining data security.

To access data in a content provider, use the ContentResolver object in your
Context
The ContentResolver object communicates with the provider object, an instance of
a class that implements ContentProvider. The provider object receives data
requests from clients, performs the requested action, and returns the results.

ContentResolver ContentProvider

CLIENT SERVER

24

Content Provider
Android includes content providers that manage data such
as audio, video, images, and personal contact information..

You can create your own custom content provider to share
your data with other packages that works just like the
built-in providers.

You need to develop your own provider if
•  you intend to share your data with other applications.
•  you want to to provide custom search suggestions in

your own application.
•  you want to copy and paste complex data or files from

your application to other applications.

25

Default content providers
•  ContactsContract

•  Stores all contacts information. etc
•  Call Log Stores

•  call logs, for example: missed calls, answered calls.
etc.

•  Browser
•  Use by browser for history, favorites. etc.

•  Media Store
•  Media files for Gallery, from SD Card. etc.

•  Setting
•  Phone device settings. etc.

26

Querying a Content Provider
To query a content provider, you provide a query string in the form
of a URI, with an optional specifier for a particular row, using the
following syntax:

<standard_prefix>://<authority>/<data_path>/<id>

For example, to retrieve all the bookmarks stored by your web
browsers (in Android), you would use the following content URI:

content://browser/bookmarks

Similarly, to retrieve all the contacts stored by the Contacts
application, the URI would look like this:

content://contacts/people

To retrieve a particular contact, you can specify the URI with a
specific ID:

content://contacts/people/3

27

Accessing calls
if (c.moveToFirst()) {
 do{
 String callType = "";
 switch (Integer.parseInt(c.getString(

 c.getColumnIndex(Calls.TYPE))))
 {
 case 1: callType = "Incoming";

 break;
 case 2: callType = "Outgoing";
 break;
 case 3: callType = "Missed";

 }
 Log.v("Content Providers",
 c.getString(c.getColumnIndex(Calls._ID))

 + ", " +
 c.getString(c.getColumnIndex(Calls.NUMBER))
 + ", " +
 callType) ;

 } while (c.moveToNext());
 }
 }
}

package …
import …

package …
import …
public class ContentProviderActivity extends Activity {
 /** Called when the activity is first created. */
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 Uri allCalls = Uri.parse("content://call_log/calls");
 Cursor c = managedQuery(allCalls, null, null, null, null);

28

Error!
E/AndroidRuntime(541): java.lang.RuntimeException:
Unable to start activity ComponentInfo{it.unitn.science.latemar/
it.unitn.science.latemar.ContentProviderActivity}:
 java.lang.SecurityException: Permission Denial: opening provider
com.android.providers.contacts.CallLogProvider from ProcessRecord{41475a28
541:it.unitn.science.latemar/10041} (pid=541, uid=10041)
requires
android.permission.READ_CONTACTS or
android.permission.WRITE_CONTACTS

29

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="it.unitn.science.latemar"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="13" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".ContentProviderActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-permission
 android:name="android.permission.READ_CONTACTS">
 </uses-permission>
</manifest>

30

Change in Orientation

Marco Ronchetti
Università degli Studi di Trento

31

Change in orientation
Change in orientation
For devices that support multiple orientations, Android
detects a change in orientation:
 the display is "landscape” or "portrait”.

When Android detects a change in orientation, its default
behavior is to destroy and then re-start the foreground
Activity.

•  Is the screen re-drawn correctly? Any custom UI code

you have should handle changes in the orientation.
•  Does the application maintain its state? The Activity

should not lose anything that the user has already
entered into the UI.

32

Change in configuration
e.g. a change in the availability of a keyboard or a
change in system language.

A change in configuration also triggers the default
behavior of destroying and then restarting the
foreground Activity.

Besides testing that the application maintains the UI
and its transaction state, you should also test that the
application updates itself to respond correctly to the
new configuration.

33

Save and restore the application state
@Override
public void onSaveInstanceState(Bundle savedInstanceState) {
 // Save UI state changes to the savedInstanceState.
 // This bundle will be passed to onCreate if the process is
 // killed and restarted.
 savedInstanceState.putCharSequence("text", button.getText());
 savedInstanceState.putInt("count", count);
 super.onSaveInstanceState(savedInstanceState);
}
@Override
public void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);
 button = (Button) findViewById(R.id.button1);
 button.setText(savedInstanceState.getCharSequence("text"));
 count=savedInstanceState.getInt("count");
}

34

What can we save in a bundle?
•  Primitive data types – arrays of p.d.t.
•  String – StringArray - StringArrayList

•  CharSequence – CharSequenceArray – CharSequenceArrayList

•  Parcelable - ParcelableSequenceArray – ParcelableSequenceArrayList

•  Serializable

35

What to test

Marco Ronchetti
Università degli Studi di Trento

36

What to test
Change in orientation

Battery life
Techniques for minimizing battery usage are
discussed in Optimizing Battery life:

https://developer.android.com/topic/performance/
power/index.html

37

What to test

Dependence on external resources
If your application depends on network access, SMS, Bluetooth,
or GPS, then you should test what happens when the resource or
resources are not available.
For example, if your application uses the network,it can notify
the user if access is unavailable, or disable network-related
features, or do both. For GPS, it can switch to IP-based location
awareness. It can also wait for WiFi access before doing large data
transfers, since WiFi transfers maximize battery usage compared
to transfers over 3G or EDGE.

You can use the emulator to test network access and bandwidth.
To learn more, please see Network Speed Emulation. To test GPS,
you can use the emulator console and LocationManager. To learn
more about the emulator console, please see
Using the Emulator Console.

38

Support of multiple
versions

Marco Ronchetti
Università degli Studi di Trento

39

1)  Specify Minimum and Target API Levels
2)  Check System Version at Runtime
3)  Use Platform Styles and Themes

https://developer.android.com/training/basics/
supporting-devices/platforms.html

40

Best practices

Marco Ronchetti
Università degli Studi di Trento

41

Performance tips
http://developer.android.com/training/articles/perf-
tips.html

42

I18n (Internationalization)

Marco Ronchetti
Università degli Studi di Trento

43

I18n (Internationalization)
https://developer.android.com/training/basics/
supporting-devices/languages

•  Text
•  Number format
•  Dates
•  Images
•  LTR vs RTL
•  Layout mirroring

44

Design

Marco Ronchetti
Università degli Studi di Trento

45

Android design
http://developer.android.com/design/index.html

