Introduction to Session beans

EJB - continued

Local Interface

*
*

This is the HelloBean local interface.

This interface is what local clients operate
on when they interact with EJB local objects.
The container vendor will implement this
interface; the implemented object is the

EJB local object, which delegates invocations
to the actual bean.

* ok Ok ok ok ok % F

*/
public interface Hellolocal extends javax.ejb.EJBLocalObject
{

/**
* The one method - hello - returns a greeting to the client.

*/

public String hello() ;
} May throw

EJBException
instead of
RemoteException

Local Home Interface

/**

* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server’s tools - the

* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.

*

* One create() method is in this Home Interface, which

*

corresponds to the ejbCreate() method in HelloBean.

*/

public interface HellolocalHome extends javax.ejb.EJBLocalHome
{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.
*/
HelloLocal create() throws javax.ejb.CreateException;

}

Local Client

Object ref = jndiContext.lookup(“HelloHome");
HelloHome home = (HelloHome)

PortableRemoteObject.narrow(ref,HelloHome.class);

HelloHome cabin_1 = home.create();

HelloLocalHome home = (HelloLocalHome)
jndiContext.lookup(“java:comp/env/ejb/ HelloLocalHome ");

HelloLocalHome cabin_1 = home.create();

We looked up a bean in java:comp/env/ejb.
This is the JNDI location that the EJB specification recommends
(but does not

require) you put beans that are referenced from other beans.

Bean Implementation

EJB 3.0
package examples.session.stateless;

import javax.ejb.Local; import javax.ejb.Stateless;
@Stateless

@QLocal (Hello.class)

public class HelloBean implements Hello {
public String hello () {

System.out.println(“hello()”); return “Hello, World!”;

}

enterprise
bean

instance

3.0 Packaging

B EJB Container JVM
Standard
Bean Deployment
Class Descriptor
(if any)
\\‘\\\
B ~\\\
Remote \\‘.\‘
Business | JarFile -
Interface ” Generator EJB Jar File
(if any) //
—

(if any) Descriptor

Local Vendor-
Business Specific
Interface Deployment

3.0 Lifecycle

EJB Container JVM

|
,] .| Local Client
|
3 1.b: Call a
Remote Client : methosd
T | 6.b: Retum from
I methad call
1.a: Call
a method : Implicit Middleware
Local Services
: Client View
= | = Lifecycle managment
- Business Interface "| & Transaction management
- 1 h i h"c i
client View 3: Call containes * :Seerrs'csurity :m: :
2 Invoke specific APIs that R e
6a: Ratun from corresponding provide implicit
methad call method on mikievare
the wrapper before Invacation
I class 5: Call container
specific APIs that
- provide implicit
> Container Generated middieware

T

4: Invokes the carresponding
business methad on bean class

1

Enterprise Bean
Class

|
|
|
|
|
|
|
|
I Wrapper Classss aftar Invocation
|
|
|
|
|
|
|
|

Client

Passivation

2: pick the least
recently used bean -
Business 3: call . Bean
@PrePassivate
Remote Interface A Instance
Interface : senalize >
bean state
|
Lol
7| Other
23 Bean
B8, Instances
®lE
2
A typical bean passivation scenario.

The client has invoked a method on
a business interface reference that
does not have a bean instance tied
to it in memory. The container’s
pool size of bean instances been
reached. Thus the container needs
to passivate a bean before handling
this client’s request.

Activation

Client
3: reconstruct bean N
Business 4: call . Bean
Interface @PostActivated Instance
Remote —— .
5: invoke business method N
Interface >
|
r
- z Other
-le
z|z Bean
L
gla Instances
Tz
=
L]
=%

A typical just-in-time statefule session
bean activation scenario. The client has
invoked a method on a business
interface reference whose stateful bean
had been passivated.

Managing the lifecycle — 3.0

@Stateful
public class MyBean {
@PrePassivate
public void passivate() {
<close socket connections, etc...>

}

@PostActivate
public void activate() {
<open socket connections, etc...>

}

