Introduction to Session beans

EJB - continued



Local Interface

*
*

This is the HelloBean local interface.

This interface is what local clients operate
on when they interact with EJB local objects.
The container vendor will implement this
interface; the implemented object is the

EJB local object, which delegates invocations
to the actual bean.

* ok Ok ok ok ok % F

*/
public interface Hellolocal extends javax.ejb.EJBLocalObject
{

/**
* The one method - hello - returns a greeting to the client.

*/

public String hello() ;
} May throw

EJBException
instead of
RemoteException




Local Home Interface

/**

* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server’s tools - the

* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.

*

* One create() method is in this Home Interface, which

*

corresponds to the ejbCreate() method in HelloBean.

*/

public interface HellolocalHome extends javax.ejb.EJBLocalHome
{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.
*/
HelloLocal create() throws javax.ejb.CreateException;

}



Local Client

Object ref = jndiContext.lookup(“HelloHome");
HelloHome home = (HelloHome)

PortableRemoteObject.narrow(ref,HelloHome.class);

HelloHome cabin_1 = home.create();

HelloLocalHome home = (HelloLocalHome )
jndiContext.lookup(“java:comp/env/ejb/ HelloLocalHome ");

HelloLocalHome cabin_1 = home.create();

We looked up a bean in java:comp/env/ejb.
This is the JNDI location that the EJB specification recommends
(but does not

require) you put beans that are referenced from other beans.



Bean Implementation

EJB 3.0
package examples.session.stateless;

import javax.ejb.Local; import javax.ejb.Stateless;
@Stateless

@QLocal (Hello.class)

public class HelloBean implements Hello {
public String hello () {

System.out.println(“hello()”); return “Hello, World!”;

}

enterprise
bean

instance



3.0 Packaging
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3.0 Lifecycle
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A typical bean passivation scenario.

The client has invoked a method on
a business interface reference that
does not have a bean instance tied
to it in memory. The container’s
pool size of bean instances been
reached. Thus the container needs
to passivate a bean before handling
this client’s request.




Activation
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A typical just-in-time statefule session
bean activation scenario. The client has
invoked a method on a business
interface reference whose stateful bean
had been passivated.




Managing the lifecycle — 3.0

@Stateful
public class MyBean {
@PrePassivate
public void passivate() {
<close socket connections, etc...>

}

@PostActivate
public void activate() {
<open socket connections, etc...>

}



