
From	HTTP	1.1	tp	HTTP	2.0	

Bandwidth	and	Latency	
Bandwidth	
In	compu)ng,	bandwidth	is	the	bit-rate	of	available	or	
consumed	informa)on	capacity	expressed	typically	in	
metric	mul)ples	of	bits	per	second.	Variously,	bandwidth	
may	be	characterized	as	network	bandwidth,	data	
bandwidth,	or	digital	bandwidth.	
	
Latency	
Latency	is	a)me	interval	between	the	s)mula)on	and	
response,	or,	from	a	more	general	point	of	view,	as	a)me	
delay	between	the	cause	and	the	effect	of	some	physical	
change	in	the	system	being	observed.	

@igrigo
rik

"1000	ms	
'me	to		
glass	

challenge"	

Delay User reaction

0 - 100 ms Instant

100 - 300 ms Slight perceptible delay

300 - 1000 ms Task focus, perceptible
delay

1 s+ Mental context switch

10 s+ I'll come back later...

●  Simple	user-input	must	be	acknowledged	within	~100	
milliseconds.	

●  To	keep	the	user	engaged,	the	task	must	complete	
within	1000	milliseconds.	

Ergo,	our	pages	should	render	within	1000	
milliseconds.	

The	World	Wide	Web	in	1996	

The	World	Wide	Web	Today	

HTTP
Archive

Content Type

Desktop Mobile
Avg # of
requests

Avg size Avg # of
requests

Avg size

HTML 10 56 KB 6 40 KB

Images 56 856 KB 38 498 KB

Javascript 15 221 KB 10 146 KB

CSS 5 36 KB 3 27 KB

Total 86+ 1169+ KB 57+ 711+ KB

Our	applicaAons	are	complex,	
and	growing...	

Ouc
h!

Nielsen’s	Law	of	Bandwidth	

Source http://www.nngroup.com/articles/law-of-bandwidth/

1984 - 300 bps

50% Growth per Year

Bandwidth	by	Country	

Source Akamai 2014 Rankings - Wikipedia

Position Country Speed (Mbps)
1 South Korea 25.3

2 Hong Kong 16.3

3 Japan 15

4 Switzerland 14.5

… … …

12 United States 11.5

13 Belgium 11.4

… … …

24 Germany 8.7

… … …

28 Spain 7.8

… … …

30 Australia 6.9

31 France 6.9

… … …

55 Bolivia 1.1

Mobile	Networks	

Source Akamai State of the Internet Q1 2015

Region

Average Speed (Mbps)

Europe

20.4

North America

9.6

Asia Pacific

8.8

South America

7.0

Africa

4.8

Desktop:	~3.1 s
	
	

Mobile 	~3.5 s

Is the web getting faster? - Google
Analytics Blog

@igrigo
rik

Latency	vs.	Bandwidth	impact	
on	Page	Load	Time	

Average household in is running on a 5 Mbps+ connection. Ergo, average
consumer would not see an improvement in page loading time by
upgrading their connection.

(doh!)

Single	digit	
perf		
improvement	
aGer		5	Mbps	

Bandwidth doesn't matter
(much) - Google

@igrigo
rik

●  Improving	bandwidth	is	"easy"...	
○  60% of new capacity through upgrades in past

decade + unlit fiber
○  "Just	lay	more	fiber..."	

●  Improving latency is expensive...

impossible?
○  Bounded by the speed of light - oops!
○  We're already within a small constant factor of

the maximum
○  "Shorter	cables?"	

$80M /
ms

Latency is the new Performance
Bottleneck

@igrigo
rik

And	latency	is	per	connecAon	

Typical	Web	Page	

OpAmizaAon	PossibiliAes	with	
HTTP	1.1	

OpAmizaAons…	

Reduce	DNS	lookups	
Every	hostname	resoluAon	requires	a	network	roundtrip,		
imposing	latency	on	the	request	and	blocking	the	request	while	
	the	lookup	is	in	progress.	
	
Make	fewer	HTTP	requests	
No	request	is	faster	than	a	request	not	made:	
	eliminate	unnecessary	resources	on	your	pages.	
	
Use	a	Content	Delivery	Network	
LocaAng	the	data	geographically	closer	to	the	client	can	significantly		
reduce	the	network	latency	of	every	TCP	connecAon	and	improve		
throughput.	
	

OpAmizaAons…	
Add	an	Expires	header	and	configure	Etags	
An	Expires	header	can	be	used	to	specify	the	cache	lifeAme	of	the	object,		
allowing	it	to	be	retrieved	directly		from	the	user’s	cache		and		
eliminaAng	the	HTTP	request	enArely.		
ETags	and	Last-Modified	headers	provide	an	efficient	cache	
	revalidaAon	mechanism—effecAvely	a	fingerprint	or	a	Amestamp		
of	the	last	update.	

OpAmizaAons…	
Gzip	assets	
All	text-based	assets	should	be	compressed	with	Gzip	when		
transferred	between	the	client	and	the	server.		
On	average,	Gzip	will	reduce	the	file	size	by	60–80%,		
which	makes	it	one	of	the	simpler	(configuraAon	flag	on		
the	server)		and	high-benefit	opAmizaAons	you	can	do.	
	
Avoid	HTTP	redirects	
HTTP	redirects	can	be	extremely	costly,	especially	when		
they	redirect	the	client	to	a	different	hostname,	which		
results	in	addiAonal	DNS	lookup,	TCP	connecAon	latency,	etc.	

Using	Keep-Alive	

Keep	Alive-Pipelining	
Using a single connection to send multiple successive
requests

Pipelining Requests
Send several requests together
Head of line blocking issues

Keep-alive	+	pipelining	

Keep	Alive-Pipelining	

The pipelining of requests results in a dramatic improvement]
in the loading times of HTML pages, especially over high
latency connections such as satellite Internet connections.

The speedup is less apparent on broadband connections, as
the limitation of HTTP 1.1 still applies: the server must send
its responses in the same order that the requests were
received — so the entire connection remains first-in-first-
out and Head Of Line blocking can occur.

Domain	sharding	

•  Web	browsers	tradiAonally	place	limits	on	the	
amount	of	concurrent	downloads	allowed	for	
each	domain	(between	2-16).	This	limit	was	
put	in	place	by	the	Internet	Engineering	Task	
Force	and	is	menAoned	in	the	HTTP/1.1	
specificaAon.	It	was	recommended	in	order	to	
reduce	Internet	congesAon	and	web	server	
overloading.		

Domain	sharding	

Inlining	

•  Inline	Small	CSS	and	Javascript	

SpriAng	

•  MulAple	images	are	combined	into	a	larger,	
composite	image.	

Concatenating files (JavaScript, CSS)
○  Reduces number of downloads and latency overhead
○  Less modular code and expensive cache invalidations (e.g. app.js)
○  Slower execution (must wait for entire file to arrive)

●  Spriting images

○  Reduces number of downloads and latency overhead
○  Painful and annoying preprocessing and expensive cache

invalidations
○  Have to decode entire sprite bitmap - CPU time and memory

●  Domain sharding
○  TCP Slow Start? Browser limits, Nah... 15+ parallel requests -- Yeehaw!!!	
○  Causes congestion and unnecessary latency and retransmissions

●  Resource inlining
○  Eliminates the request for small resources
○  Resource can’t be cached, inflates parent document
○  30% overhead on base64 encoding

The	culprit	is	HTTP	on	TCP	
Http 1.1 chatty - TCP is not made for chatty protocols
TCP has slow start and head of line blocking

Most HTTP transfers are short and bursty, whereas TCP is optimized
for long-lived, bulk data transfers

SPDY	
an	experimental	protocol,	developed	at	Google	and	
announced	in	mid-2009	
primary	goal:to	try	to	reduce	the	load	latency	of	web	
pages	
	
•  Target	a	50%	reducAon	in	page	load	Ame	(PLT).	
•  Avoid	the	need	for	any	changes	to	content	by	website	authors.	
•  Minimize	deployment	complexity,	avoid	changes	in	network	

infrastructure.	
•  Develop	this	new	protocol	in	partnership	with	the	open-source	

community.	
•  Gather	real	performance	data	to	(in)validate	the	experimental	

protocol.	

HTTP 2.0
goals

●  Improve end-user
perceived latency

●  Address the "head of line
blocking"

●  Not require multiple
connections

●  Retain the semantics of
HTTP/1.1

"a	protocol	designed	for	low-
latency	transport		of	content	over	

the	World	Wide	Web"	

●  One TCP connection
●  Request = Stream

○  Streams are
multiplexed

○  Streams are
prioritized

●  (New) binary
framing layer
○  Prioritization
○  Flow control
○  Server push

●  Header compression

HTTP	2.0	in	a	nutshell	

@igrigo
rik

“...	we’re	not	replacing	all	of	HTTP	—	the	
methods,	status		codes,	and	most	of	the	
headers	you	use	today	will	be	the		same.	

Instead,	we’re	re-defining	how	it	gets	used	
“on	the		wire”	so	it’s	more	efficient,	and	so	
that	it	is	more	gentle	to		the	Internet	itself”	

- Mark Nottingham
(chair)

●  Length-prefixed frames
●  Type indicates … type of frame

○  DATA,	HEADERS,	PRIORITY,	
PUSH_PROMISE,	… 	

●  Each frame may have custom
flags
○  e.g. END_STREAM	

●  Each frame carries a 31-bit
stream identifier
○  After that, it’s frame specific

payload...

All	frames	have	a	common	8-byte	
header	

frame	=	
buf.read(8)		
if	
frame_i_care
_about	

do_someth
ing_smart		
else	

buf.skip(fram
e.length)		end	

@igrigo
rik

●  Common 8-byte header
●  Client / server allocate new

stream ID
○  client:	odd,	server:	even	

Opening	a	new	stream	with	
HTTP	2.0	(HEADERS)	

●  Optional 31-bit stream
priority field
○  Flags	indicates	if	

priority	is	present	
○  2^31	is	lowest	priority	

●  HTTP header payload
○  see	h	

eader-compression-01	

@igrigo
rik

●  Each side maintains
“header tables”

●  Header tables are
initialized with
common header key-
value pairs

●  New requests “toggle”
or “insert” new values
into the table

●  New header set is a
“diff” of the previous
set of headers

●  E.g.	Repeat	request	(polling)	

with	exact		same	headers	
incurs	no	overhead		(sans	
frame	header)	

HTTP	2.0	header	compression	
(in	a	nutshell)	

@igrigo
rik

●  Common 8-byte header
●  Followed by application data…

●  In theory, max-length = 2^16-1
●  To reduce head-of-line blocking: max frame size is 2^14-1 (~16KB)

○  Larger payloads are split into multiple DATA frames, last frame
carries “END_STREAM” flag

Sending	applicaAon	data	with	
…	DATA	frames.	

@igrigo
rik

●  OpAmizing	TCP	server	
stacks	

●  OpAmizing	TLS	
deployments	

●  OpAmizing	for	mobile	
networks	

●  HTTP	2.0	features,	
framing,	deployment...	

●  XHR,	SSE,	WebSocket,	
WebRTC,	...	

For	an	in-depth	discussion	on	all	
of	the	above...	

 http://hpbn.co

