
JNDI

Java Naming and Directory Interface

See also:
http://docs.oracle.com/javase/jndi/tutorial/

Distributed Systems
Registry

Naming service
A naming service is an entity that
• associates names with objects.We call this binding names to
objects. This is similar to a telephone company ’s associating a
person ’s name with a specific residence ’s telephone number

• provides a facility to find an object based on a name.We
call this looking up or searching for an object.This is similar to
a telephone operator finding a person ’s telephone number based on
that person ’s name and connecting the two people.

In general,a naming service can be used to find any kind of generic
object, like a file handle on your hard drive or a printer located across
the network.

Directory service

A directory object differs from a generic object because you
can store attributes with directory objects. For example,you
can use a directory object to represent a user in your company.You
can store information about that user,like the user ’s password,as
attributes in the directory object.

A directory service is a naming service that has been
extended and enhanced to provide directory object
operations for manipulating attributes.

A directory is a system of directory objects that are all
connected. Some examples of directory products are Netscape
Directory Server and Microsoft ’s Active Directory.

Directory service

Directories are similar to DataBases, except that they
typically are organized in a hierarchical tree-like structure.
Typically they are optimized for reading.

Examples of Directory services

Netscape Directory Server

Microsoft ’s Active Directory

Lotus Notes (IBM)

NIS (Network Information System) by Sun

NDS (Network Directory Service) by Novell

LDAP (Lightweight Directory Access Protocol)

JNDI concepts

JNDI is a system for Java-based clients to interact with naming and
directory systems. JNDI is a bridge over naming and directory
services, that provides one common interface to disparate directories.

Users who need to access an LDAP directory use the same API as
users who want to access an NIS directory or Novell’s directory. All
directory operations are done through the JNDI
interface, providing a common framework.

JNDI advantages

- You only need to learn a single API to access all sorts of directory
service information, such as security credentials, phone numbers,
electronic and postal mail addresses, application preferences,
network addresses, machine configurations, and more.

- JNDI insulates the application from protocol and implementation
details.

- You can use JNDI to read and write whole Java objects from
directories.

- You can link different types of directories, such as an LDAP
directory with an NDS directory, and have the combination appear to
be one large, federated directory.

JNDI advantages

Applications can store factory objects and configuration variables in a global
naming tree using the JNDI API.

JNDI, the Java Naming and Directory Interface, provides a global memory
tree to store and lookup configuration objects. JNDI will typically contain
configured Factory objects.

JNDI lets applications cleanly separate configuration from the
implementation. The application will grab the configured factory object using
JNDI and use the factory to find and create the resource objects.

In a typical example, the application will grab a database DataSource to
create JDBC Connections. Because the configuration is left to the
configuration files, it's easy for the application to change databases for
different customers.

JNDI Architecture

The JNDI homepage
 http://java.sun.com/products/jndi

 has a list of service providers.

JNDI concepts

An atomic name is a simple,basic,indivisible component of a
name.For example,in the string /etc/fstab ,etc and fstab are atomic
names.

A binding is an association of a name with an object.

A context is an object that contains zero or more bindings. Each
binding has a distinct atomic name. Each of the mtab and exports
atomic names is bound to a file on the hard disk.

A compound name is zero or more atomic names put together. e.g.
the entire string /etc/fstab is a compound name. Note that a
compound name consists of multiple bindings.

JNDI names

JNDI names look like URLs.
A typical name for a database pool is java:comp/env/jdbc/test.
The java: scheme is a memory-based tree. comp/env is the
standard location for Java configuration objects and jdbc is the
standard location for database pools.

Examples
java:comp/env Configuration environment
java:comp/env/jdbc JDBC DataSource pools
java:comp/env/ejb EJB remote home interfaces
java:comp/env/cmp EJB local home interfaces (non-standard)
java:comp/env/jms JMS connection factories
java:comp/env/mail JavaMail connection factories
java:comp/env/url URL connection factories java:comp/
UserTransaction UserTransaction interface

Contexts and Subcontexts

A naming system is a connected set of contexts.

A namespace is all the names contained
 within naming system.

The starting point of exploring a namespace
is called an initial context. An initial context
is the first context you happen to use.

To acquire an initial context, you use an
initial context factory.
 An initial context factory basically is your
JNDI driver.

Acquiring an initial context

When you acquire an initial context, you must supply the
necessary information for JNDI to acquire that initial context.

For example, if you’re trying to access a JNDI implementation
that runs within a given server, you might supply:
- The IP address of the server
- The port number that the server accepts
- The starting location within the JNDI tree
- Any username/password necessary to use the server

Acquiring an initial context

• 
package examples;

public class InitCtx {
 public static void main(String args[]) throws Exception {
 // Form an Initial Context
 javax.naming.Context ctx =
 new javax.naming.InitialContext();
 System.err.println("Success!");
 Object result = ctx.lookup("PermissionManager");
 }
}

java
-Djava.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
-Djava.naming.provider.url=jnp://193.205.194.162:1099
-Djava.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
examples.InitCtx

Acquiring an initial context

• 
java.naming.factory.initial: The name of the environment property for specifying the
initial context factory to use. The value of the property should be the fully qualified
class name of the factory class that will create an initial context.

java.naming.provider.url: The name of the environment property for specifying the
location of the service provider the client will use. The NamingContextFactory class
uses this information to know which server to connect to. The value of the property
should be a URL string

Everything but the host component is optional. The following examples are equivalent
because the default port value(on JBOSS) is 4447 (used to be 1099).
remote://www.jboss.org:4447/
www.jboss.org:4447
www.jboss.org

used to be: jnp://www.jboss.org:1099/

Acquiring an initial context

•  java.naming.factory.url.pkgs:
The name of the environment property for specifying the list of
package prefixes to use when loading in URL context factories.
The value of the property should be a colon-separated list of
package prefixes for the class name of the factory class that will
create a URL context factory.
For the JBoss JNDI provider this must be
org.jboss.ejb.client.naming

(used to be: org.jboss.naming:org.jnp.interfaces).
This property is essential for locating the remote: and java: URL
context factories of the JBoss JNDI provider.

Operations on a JNDI context

list() retrieves a list of contents available at the current
context.This typically includes names of objects bound to the
JNDI tree,as well as subcontexts.

lookup() moves from one context to another context,such as
going from c:\ to c:\windows. You can also use lookup()to look
up objects bound to the JNDI tree.The return type of
lookup()is JNDI driver specific.

rename() gives a context a new name

Operations on a JNDI context

createSubcontext()creates a subcontext from the current
context,such as creating c:\foo \bar from the folder c:\foo.

destroySubcontext()destroys a subcontext from the current
context,such as destroying c:\foo \bar from the folder c:\foo.

bind()writes something to the JNDI tree at the current
context.As with lookup(),JNDI drivers accept different
parameters to bind().

rebind()is the same operation as bind,except it forces a bind
even if there is already something in the JNDI tree with the
same name.

JNDI Examples

Accessing rmiregistry

Using JNDI to access rmiregisty
see http://docs.oracle.com/javase/8/docs/technotes/guides/jndi/jndi-rmi.html

package jndiaccesstormiregistry;

import java.util.Properties;
import javax.naming.CompositeName;
import javax.naming.Context;
import javax.naming.InvalidNameException;
import javax.naming.LinkRef;
import javax.naming.NamingException;
import javax.naming.directory.InitialDirContext;

public class Demo {

 public static void main(String[] args) {
 // Identify service provider to use
 Properties env = new Properties();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.rmi.registry.RegistryContextFactory");
 env.put(Context.PROVIDER_URL, "rmi://localhost:1099");

 private static void perr(Exception ex, String message) {
 System.out.println(message);
 ex.printStackTrace();
 System.exit(1);
 }

Using JNDI to access rmiregisty
 CompositeName cn=null;
 try { cn = new CompositeName("foo"); }
 catch (InvalidNameException ex) { perr(ex,"Invalid name!"); }
 LinkRef lr=new LinkRef(cn);
 Context ctx=null;
 try { ctx = new InitialDirContext(env);}
 catch (NamingException ex) { perr(ex,"Invalid InitialDirContext!");}
 String name= "myVar3";
 try { Object o=ctx.lookup(name);}
 catch (NamingException ex) {
 System.out.println(name+" is not registered");
 try { ctx.bind(name,lr); }
 catch (NamingException ex1) { perr(ex,"Unable to bind "+name);}
 }
 LinkRef result=null;
 try { result = (LinkRef)ctx.lookup(name) ;}
 catch (NamingException ex) { perr(ex,"Unable to lookup "+name);}
 try { System.out.println(result.getLinkName()); }
 catch (NamingException ex) {perr(ex,"Unable to get name from LinkRef ");}
 try { ctx.close();}
 catch (NamingException ex) {perr(ex,"Error on close");}
 }}

if the name is not yet registered,
register it

acquire the context

create the object to be stored:
in this case a (storable) type of
String

look up the name

print its value

close the connection

Using JNDI to access rmiregisty

NOTE: we are forcing rmiregistry to do
something it wasn't designed for (storing strings)

rmiregistry is FLAT – no subcontexts!

An interesting additional reading about
rmiregistry:
http://www.drdobbs.com/jvm/a-remote-java-rmi-registry/212001090?pgno=1

JNDI Examples

Accessing LDAP

A JNDI-LDAP
 example

package jndiaccesstoldap;
import javax.naming.Context;
import javax.naming.directory.InitialDirContext;
import javax.naming.directory.DirContext;
import javax.naming.directory.Attributes;
import javax.naming.NamingException;
import java.util.Hashtable;
public class Getattr {
 public static void main(String[] args) {
 // Identify service provider to use
 Hashtable env = new Hashtable(11);
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 //env.put(Context.PROVIDER_URL, "ldap://ldap.unitn.it:389/o=JNDITutorial");
 env.put(Context.PROVIDER_URL, "ldap://ldap.unitn.it:389/o=personale");

 try {
 // Create the initial directory context
 DirContext ctx = new InitialDirContext(env);

 // Ask for all attributes of the object
 Attributes attrs = ctx.getAttributes("cn=Ronchetti Marco");

 // Find the surname ("sn") and print it
 System.out.println("sn: " + attrs.get("sn").get());

 // Close the context when we're done
 ctx.close();
 } catch (NamingException e) {
 System.err.println("Problem getting attribute: " + e);
}}}

A JNDI example
on an open LDAP
 public class Demo {

 public static void main(String[] args) throws Exception {
 // Identify service provider to use
 Properties env = new Properties();
 env.put(Context.INITIAL_CONTEXT_FACTORY,"com.sun.jndi.ldap.LdapCtxFactory");
 env.put(Context.PROVIDER_URL, "ldap://ldap.virginia.edu");
 // Create the initial directory context
 DirContext ctx = new InitialDirContext(env);
 list(ctx,"o=University of Virginia,c=US");
 DirContext ctx1 = (DirContext) ctx.lookup("o=University of Virginia,c=US");
 list(ctx1,"ou=Arts & Sciences Graduate");
 DirContext ctx2 = (DirContext) ctx1.lookup("ou=Arts & Sciences Graduate");
 list(ctx2,"ou=casg");
 DirContext ctx3 = (DirContext) ctx2.lookup("ou=casg");
 Attributes attrs = ctx3.getAttributes("cn=Amy Marion Coddington (amc4gc)");
 NamingEnumeration<? extends Attribute> ne = attrs.getAll();
 while (ne.hasMore()) {
 System.out.println(ne.next());
 }
 ctx.close();
 }
}

static void list(DirContext ctx, String listKey) throws Exception {
 NamingEnumeration<NameClassPair> cp = ctx.list(listKey);
 while (cp.hasMore()) {
 System.out.println(cp.next());
 }
 System.out.println("=================");
 }

http://its.virginia.edu/network/publicldap.html

XML

A quick reminder

All XML documents must be well-formed
XML documents need not be valid, but all XML documents must be well-

formed.

(HTML documents are not required to be well-formed)

There are several requirements for an XML document to be well-formed.

Well formed documents

Caution: XML is case sensitive

Start and end tags are required
To be well-formed, all elements that can contain character data must have

both start and end tags.
(Empty elements have a different requirement: see later.)
For purposes of this explanation, let's just say that the content that we

discussed earlier comprises character data.

Elements must nest properly
If one element contains another element, the entire second element must

be defined inside the start and end tags of the first element.

Well formed documents

Dealing with empty elements
We can deal with empty elements by writing them in either of the following

two ways:  

 <book></book>
 <book/>

You will recognize the first format as simply writing a start tag followed
immediately by an end tag with nothing in between.

The second format is preferable

Empty element can contain attributes
Note that an empty element can contain one or more attributes inside the

start tag:
  

 <book author=“eckel" price="$39.95" />

Well formed documents

No markup characters are allowed
For a document to be well-formed, it must not have some

characters (entities) in the text data: < > “ ‘ &.
If you need for your text to include the < character you can

represent it using < or < or < instead.

All attribute values must be in quotes (apostrophes or double
quotes).

You can surround the value with apostrophes (single quotes) if the
attribute value contains a double quote. An attribute value that is
surrounded by double quotes can contain apostrophes.

Well formed documents

An XML document must have a root tag.

An XML document can contain:
Processing Instructions (PI): <? … ?>
Comments <!-- … -->

When a XML document is analyzed, character data within
comments or PIs are ignored.

The content of comments is ignored, the content of PIs is
passed on to applications.

XML: additional elements

An XML document can contain sections used to escape character strings
that may contain elements that you do not want to be examined by your
XML engine, e.g. special chars (<) or tags:

CDATA sections <![CDATA[…]]>

When a XML document is analyzed, character data within a CDATA
section are not parsed, by they remain as part of the element content.

<java>
<![CDATA[

if (arr[indexArr[4]]>3) System.out.println(“<HTML>”);
]]>
</java>

XML: CDATA 
 sections

Avoid having]]> in your
CDATA section!

Note: the element content that are
going to be parsed are called

PCDATA

JBOSS/Wildfly

Java Naming and Directory Interface

What is Jboss/Wildfly ?
•  JBoss Application Server (or JBoss AS) is a free

software/open-source Java EE-based application
server.

•  Not only implements a server that runs on Java, but
it actually implements the Java EE part of Java.

•  Because it is Java-based, the JBoss application
server operates cross-platform: usable on any
operating system that supports Java.

•  JBoss AS was developed by JBoss, now a division
of Red Hat.

JEE
•  JEE provides an API and runtime environment

for developing and running enterprise
software, including network and web services,
and other large-scale, multi-tiered, scalable,
reliable, and secure network applications.

•  Java EE extends the Java SE providing API
for object-relational mapping, distributed and
multi-tier architectures, and web services.

•  The platform incorporates a design based
largely on modular components running on an
application server.

Key JEE Components
•  EJB (Enterprise JavaBeans) define a distributed component

system that is the heart of the Java EE specification . This
system , in fact, provides the typical features required by
enterprise applications , such as scalability, security , data
persistence , and more.

•  JNDI defines a system to identify and list generic resources ,
such as software components or data sources .

•  JDBC is an interface for access to any type of data bases.
•  JTA is a system for distributed transaction support .
•  JPA is an API for the management of persistent data .
•  JAXP is an API for handling files in XML format.
•  JMS (Java Message Service) a system for sending and

managing messages.

Installing Wildfly
•  http://wildfly.org/downloads/

•  download 9.01.Final
.

GETTING STARTED GUIDE:
https://docs.jboss.org/author/display/WFLY9/Documentation

•  unzip it (where you like: that will be your
JBOSS_HOME)

Wildfly directory structure

Starting and stopping Wildfly
cd into your JBOSS_HOME/bin

UNIX (LINUX-MAC)

•  START: ./standalone.sh &
•  STOP: ./jboss-cli.sh --connect command=:shutdown

WINDOWS

•  START: ./standalone.bat
•  STOP: ./jboss-cli.bat --connect command=:shutdown

On starting….
•  ===

•  JBoss Bootstrap Environment

•  JBOSS_HOME: /Users/ronchet/Downloads/wildfly-9.0.1.Final

•  JAVA: java

•  JAVA_OPTS: -server -XX:+UseCompressedOops -server -XX:+UseCompressedOops -Xms64m -
Xmx512m -XX:MaxPermSize=256m -Djava.net.preferIPv4Stack=true -
Djboss.modules.system.pkgs=org.jboss.byteman -Djava.awt.headless=true

•  ===

•  Java HotSpot(TM) 64-Bit Server VM warning: ignoring option MaxPermSize=256m; support was removed
in 8.0

•  22:43:16,319 INFO [org.jboss.modules] (main) JBoss Modules version 1.4.3.Final
•  22:43:16,565 INFO [org.jboss.msc] (main) JBoss MSC version 1.2.6.Final
•  22:43:16,662 INFO [org.jboss.as] (MSC service thread 1-6) WFLYSRV0049: WildFly Full 9.0.1.Final

(WildFly Core 1.0.1.Final) starting…
•  (…)
22:43:19,264 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: WildFly Full 9.0.1.Final (WildFly
Core 1.0.1.Final) started in 3303ms - Started 205 of 382 services (211 services are lazy, passive or on-
demand)

watch
for
errors!

http://localhost:8080

Wildfly: Creating admin users
ronchet$./add-user.sh
What type of user do you wish to add?
 a) Management User (mgmt-users.properties)
 b) Application User (application-users.properties)
(a): a
Enter the details of the new user to add.
Realm (ManagementRealm) : - leave this blank-
Username : admin
Password : pw
Re-enter Password : pw
About to add user 'admin' for realm 'ManagementRealm'
Is this correct yes/no? yes
Added user 'admin' to file '/Users/ronchet/Downloads/jboss-as-7.1.1.Final/standalone/
configuration/mgmt-users.properties'
Added user 'admin' to file '/Users/ronchet/Downloads/jboss-as-7.1.1.Final/domain/
configuration/mgmt-users.properties'

http://localhost:9990

making WildFly accessible from
remote

edit the server descriptor:
•  cd into ${JBOSS_HOME}/standalone/configuration/
•  edit standalone.xml

toward the end of the file, find the interfaces definitions:
<interfaces>
…
<interfaces/>

ADD A NEW INTERFACE (give it a name: in this example myInterface), setting the
access of it to any ip.

security
problem!

making WildFly accessible from
remote

<interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:127.0.0.1}">
 </inet-address></interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}">
 </inet-address></interface>
 <interface name="unsecure">
 <inet-address value="${jboss.bind.address.unsecure:127.0.0.1}">
 </inet-address></interface>
 <interface name="myInterface">
 <any-address/>
 </interface>
 </interfaces>

making JBOSS accessible from
remote

find the socket-binding-group tag, which sets the ports required for the given
interfaces.

change the default-interface parameter to match the new interface (myInterface in
ourcase)

was:
<socket-binding-group default-interface="default" name="standard-sockets" port-
offset="${jboss.socket.binding.port-offset:0}">

must become:
<socket-binding-group default-interface="myInterface" name="standard-sockets" port-
offset="${jboss.socket.binding.port-offset:0}">

Save, and restart the server

JBOSS: Creating users
ronchet$./add-user.sh
What type of user do you wish to add?
 a) Management User (mgmt-users.properties)
 b) Application User (application-users.properties)
(a): b
Enter the details of the new user to add.
Realm (ApplicationRealm) : - leave this blank-
Username : user
Password : pw
Re-enter Password : pw
What roles do you want this user to belong to? (Please enter a comma separated list,
or leave blank for none) : - leave this blank-
About to add user 'user' for realm 'ApplicationRealm'
Is this correct yes/no? yes
Added user 'user' to file '/Users/ronchet/Downloads/jboss-as-7.1.1.Final/standalone/
configuration/application-users.properties'
Added user 'user' to file '/Users/ronchet/Downloads/jboss-as-7.1.1.Final/domain/
configuration/application-users.properties'

Adding JNDI bindings
1) locate in your standalone/configuration/standalone.xml the line
<subsystem xmlns="urn:jboss:domain:naming:1.1"/>

2) replace it with the following section
<subsystem xmlns="urn:jboss:domain:naming:1.1">
 <bindings>
 <simple name="java:jboss/exported/jndi/mykey" value="MyJndiValue"/>
 <lookup name="java:jboss/exported/link/mykey" lookup="java:jboss/exported/jndi/
mykey"/>
 </bindings>
</subsystem>

3) restart your server
NOTE: the space visible on the client is the one following java:jboss/exported/

On client: jndi/mykey On server: java:jboss/exported/jndi/mykey

1.  start javaconsole (It's in the bin directory)
2.  connect with your wildfly running instance
3.  inspect the jndi bindings

Inspecting
your

 server

Accessing via code
public class JNDIaccess {
 public static void main(String a[]) throws NamingException {
 new JNDIaccess();
 }
 public JNDIaccess() throws NamingException {
 Properties jndiProps = new Properties();
 jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,

 "org.jboss.naming.remote.client.InitialContextFactory");
 jndiProps.put(Context.PROVIDER_URL, "http-remoting://127.0.0.1:8080");

// put your username!
 jndiProps.put(Context.SECURITY_PRINCIPAL, "admin");
// put your password!
 jndiProps.put(Context.SECURITY_CREDENTIALS, "pippo123!");
 InitialContext initialContext = new InitialContext(jndiProps);
 Object result = initialContext.lookup("jndi/mykey");
 System.out.println(result);
 }
}
see https://docs.jboss.org/author/display/WFLY8/Remote+EJB+invocations+via+JNDI+-+EJB+client+API+or+remote-naming+project

Add the libraries!
They're in JBOSS_HOME/bin/client/jboss-client.jar

Warning

JNDI access to these data on Wildfly is
READ ONLY!

run:
ott 08, 2015 10:58:08 PM org.xnio.Xnio <clinit>
INFO: XNIO version 3.3.1.Final
ott 08, 2015 10:58:08 PM org.xnio.nio.NioXnio <clinit>
INFO: XNIO NIO Implementation Version 3.3.1.Final
ott 08, 2015 10:58:08 PM org.jboss.remoting3.EndpointImpl <clinit>
INFO: JBoss Remoting version 4.0.9.Final
MyJndiValue
BUILD SUCCESSFUL (total time: 0 seconds)

OUTPUT

Warning
JNDI access from code is READ ONLY!, but you can write from
CLI
$./jboss-cli.sh
connect
[standalone@localhost:9999 /] /subsystem=naming/binding=
java\:jboss\/exported\/demoParam:add(value=
"Demo configuration value",binding-type=simple)
{ "outcome" => "success"}
[standalone@localhost:9999 /] quit

Then reconnect with jconsole to see the result

All on one line!

Useful references
•  http://www.mastertheboss.com/jboss-server/jboss-as-7/jboss-as-7-

introduction
•  https://docs.jboss.org/author/display/AS7/Getting+Started+Guide
•  https://docs.jboss.org/author/display/AS71/JNDI+Reference
•  https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote

+client+using+JNDI
•  https://docs.jboss.org/author/display/AS71/Developer

+Guide#DeveloperGuide-UpdateapplicationJNDInamespacenames
•  http://docs.oracle.com/javase/jndi/tutorial/trailmap.html
•  https://docs.jboss.org/author/display/AS71/CLI+Recipes

