Clients and Servers

*The client is the actor that requests to talk.
*The server is the actor that accepts to talk.

The client can create a socket to start a conversation to a
server app anytime.

The server must be repared in aadvance to accept an
incoming conversation.

Sockets
The java.net.Socket class represents a side of

connection (regardless if client o or server).

The server uses the java.net.ServerSocket class to
wait for incoming conversations. It creates a
ServerSocket object and waits, blocked on a
accept() call until a connection comes. Then it
creates a Socket object to be used to communicate
with the client.

Sockets
A server can maintain many conversations

simoultaneously.
There is only one ServerSocket, but one Socket
for every client.

- i ServerSocket § Server Application

~

incoming connectipn
~

'S
'

Client Application : RN N
Socket d—-: ,

Client Application '
Socket

Server port

The client needs two pieces of info to establish a
connection: a hostname (to get the server’s address) and a
port number (to identify a process on the server
machine).

A server app listens on a predefined port while waiting
for a connection.

Port numbers are coded in the RFC (Es. Telnet 23, FTP 21,
ecc.), but they can be freely chosen for custom services.

Client port

The client’s port number is generally assigned by
the OS, and in general you do not care about it.

When the server responds it opens a new socket
whose number is assigned by the OS. It then
continues listening on the original port, and
serves the particular cliens on the new socket.

Sockets

The first choice is which protocol to use:
connection-oriented (TCP)
or
connectionless (UDP).

The Java Socket class uses TCP

Java.net.Socket

This class implements a socket for interprocess
communication over the network.

The constructor methods create the socket and connect it
to the specified host on the specified port.

Java.net.Socket - main methods

The constructor methods create the socket and connect it
to specified host and port.

Once the socket is created, getInputStream() e
getOutputStream() return InputStream e OutputStream
objects (usable as I/O channels).

getlnetAddress() e getPort() return address and port to
which the socket is connected.

getLocalPort() returns the local port used by the socket .

close() closes la socket.

Java.net.ServerSocket

During creation you specity on which port to
listen

The accept() starts listening and blocks until
there is an incoming call.

At that point, accept() accepts the connection,
creates and returns a Socket that the server can
use to talk to the client.

Java.net.ServerSocket — main methods

getlnetAddress() returns the local address
getLocalPort() returns the local port .

close() closes the socket.

Sockets
Clients

try {
Socket sock = new Socket("www.pippo.it", 80);
//Socket sock = new Socket("128.252.120.1", 80);

} catch (UnknownHostException e) {
System.out.println("Can't find host.");

} catch (IOException e) {

System.out.println ("Error connecting to host.");

}

Connection-oriented protocol
Server

*Create a ServerSocket obiject.

* After accepting the connection, create a Socket che
object.

*Create InputStream and OutputStream to read/write
bytes from/to the connection.

*Optionally create a new thread for every connection, so
that the serer can listen for new requests while serving
arrived clients.

Reading & Writing raw bytes — Client side

try {
Socket server = new Socket("foo.bar.com", 1234);
InputStream in = server.getInputStream() ;
OutputStream out = server.getOutputStream() ;
// Write a byte
out.write(42) ;
// Read a byte
Byte back = in.read():
server.close() ;

} catch (IOException e) { }

Reading & Writing raw bytes — Server side

try {
ServerSocket listener = new ServerSocket(1234);
while (!'finished) {
Socket aClient = listener.accept() ;
// wait for connection
InputStream in = aClient.getInputStream() ;
OutputStream out = aClient.getOutputStream() ;
// Read a byte
Byte importantByte = in.read() ;
// Write a byte
out.write (43) ;
aClient.close() ;
}
listener.close() ;
} catch (IOException e) { }

Reading & Writing newline delimited strings —
Client

Incapsulating InputStream and OutputStream it is
possible to access streams in an easier way.

try {
Socket server = new Socket("foo.bar.com", 1234);
InputStream in = server.getInputStream() ;

DataInputStream din = new DataInputStream(in) ;

OutputStream out
PrintStream pout

= server.getOutputStream() ;
= new PrintStream(out);
// Say "Hello" (send newline delimited string)
pout.println("Hello!") ;
// Read a newline delimited string
String response = din.readLine() ;
server.close() ;
} catch (IOException e) { }

Reading & Writing newline delimited strings —

Server

try {

ServerSocket listener = new ServerSocket(1234);
while ('finished) {

}

Socket aClient = listener.accept() ;

// wait for connection

InputStream in = aClient.getInputStream() ;
DataInputStream din = new DataInputStream(in);
OutputStream out = aClient.getOutputStream() ;
PrintStream pout = new PrintStream(out)

// Read a string

String request = din.readLine() ;

// Say "Goodbye"

pout.println ("Goodbye!") ;

aClient.close() ;

listener.close() ;
} catch (IOException e) { }

A concurrent HT TP mini-server -
Introduction

TinyHttpd listens on a specified port and services simple
HTTP "get file" requests. They look something like this:
GET /path/filename [optional stuff]

Your Web browser sends one or more as lines for each
document it retrieves. Upon reading the request, the server
tries to open the specified file and send its contents. If that
document contains references to images or other items to be
displayed inline, the browser continues with additional GET
requests. For best performance (especially in a time-slicing
environment), TinyHttpd services each request in its own
thread. Therefore, TinyHttpd can service several requests
concurrently.

A concurrent HT TP mini-server

package tinyhttpd;

import java.net.¥*;
import java.io.*;

public class TinyHttpd {
public static void main(String argv([])
throws IOException ({
int port = 8000;
if (argv.length>0) port=Integer.parselnt (argv[0])
ServerSocket ss = new ServerSocket (port);
System.out.println("Server is ready'")
while (true)

new TinyHttpdConnection (ss.accept());

A concurrent HT TP mini-server

class TinyHttpdConnection extends Thread ({

Socket sock;

TinyHttpdConnection (Socket s) ({
sock = s;
setPriority(NORM;PRIORITY - 1);
start () ;

public void run() {
System.out.println (" ")
OutputStream out = null;
try {
out = sock.getOutputStream() ;
BufferedReader d =

new BufferedReader (new InputStreamReader (

sock.getInputStream())) ;
String req = d.readLine();;
System.out.println("Request: " + req);

StringTokenizer st = new StringTokenizer (req) ;

A concurrent HT TP mini-server - Note

. By lowering its priority to NORM_PRIORITY-1 (just
below the default priority), we ensure that the
threads servicing established connections won't
block TinyHttpd's main thread from accepting new
requests.

(On a time-slicing system, this is less important.)

Un mini-server concorrente HT TP

if ((st.countTokens () >= 2) && st.nextToken() .equals("GET")) {
if ((req = st.nextToken()) .startsWith("/")) {
req = req.substring(1l) ;
}
if (req.endsWith("/") || reqg.equals("")) {
req = req + "index.html";
}

try {
FileInputStream fis = new FilelInputStream(req) ;

byte[] data = new byte[fis.available()];

fis.read(data) ;

out.write(data) ;

} catch (FileNotFoundException e) ({
new PrintStream(out) .println("404 Not Found") ;
System.out.println("404 Not Found: " + req);

}

} else {
new PrintStream(out) .println("400 Bad Request'");

System.out.println("400 Bad Request: " + req);
sock.close() ;

Un mini-server concorrente HT TP

} catch (IOException e) {
System.out.println ("Generic I/O error " + e);
} finally {
try {
out.close() ;
} catch (IOException ex) ({
System.out.println("I/O error on close" + ex);

}

Project Properties - TinyHttpd

Categories:

@ Sources
@ Libraries
v © Build
@ Compiling
@ Packaging
@ Deployment
@ Documenting
2 Run
v @ Application
@ Web Start
@ License Headers
@ Formatting
@ Hints

Configuration: [<default config>

3] [New... J Delete

Runtime Platform: [Project Platform

A~

v} [Manage Platforms...

J

Main Class: Itinyhttpd.TinyHttpd

| { Browse...

J

Arguments: [

|

Working Direcn@cts/carlfx/TinyHttpd/src/tinyhttpd | [) Browse...

VM Options: |

| { Customize

(e.g. -Xms10m)

Run with Java Web Start

(To run and debug the application with Java Web Start, first enable Java Web Start)

[

Help

| | cancel | | oK

-
[secret
build.xml

manifest.mf

A concurrent HT TP mini-server - usage

Compile TinyHttpd and place it in your class path. Go to a
directory with some interesting documents and start the
daemon, specifying an unused port number as an argument.
For example:

% java TinyHttpd 1234

You should now be able to use your Web browser to retrieve
files from your host. You'll have to specify the nonstandard
port number in the URL. For example, if your hostname is
foo.bar.com, and you started the server as above, you could
reference a file as in:

http://foo.bar.com:1234/welcome.html

A concurrent HT TP mini-server - Problems

TinyHttpd still has room for improvement. First, it
consumes a lot of memory by allocating a huge array
to read the entire contents of the file all at once. A
more realistic implementation would use a buffer
and send large amounts of data in several passes.

TinyHttpd also fails to deal with simple things like

directories. It wouldn't be hard to add a few lines of

code to read a directory and generate linked HTML
listings like most Web servers do.

A concurrent HTTP mini-server - Problems

TinyHttpd sutfers from the limitations imposed by
the fickleness of filesystem access.

It's important to remember that file pathnames are
still architecture dependent--as is the concept of a
filesystem to begin with. TinyHttpd should work,
as is, on UNIX and DOS-like systems, but may
require some customizations to account for
differences on other platforms. It's possible to write
more elaborate code that uses the environmental
information provided by Java to tailor itself to the
local system.

A concurrent HT TP mini-server - Problems

The biggest problem with TinyHttpd is that there are
no restrictions on the files it can access. With a little
trickery, the daemon will happily send any file in
your filesystem to the client.

[t would be nice if we could restrict TinyHttpd to
files that are in the current directory, or a
subdirectory.

Assignment

Modify the simple web server so that all the urls that start with the token "process "
(e.g. http://localhost:8000/process)
launch an external process.

For instance,
http://localhost:8000/process/reverse?pari=string&par2=booleanvalue
should activate an (external) process that takes the par1 string.

If par2 is true, it returns the reversed string (e.g. ROMA -> AMOR).

If par2 is false, it checks if the string is a palindrome, and returns the answer
(true or false). (e.g. ROOR -> true, ROAR —> false)

To see how to start an external process from Java, take a look at one of these:
* http://www.rgagnon.com/javadetails/java-0014.html

« https://www.mkyong.com/java/how-to-execute-shell-command-from-java/

* https://www.baeldung.com/run-shell-command-in-java

Deadline Sept. 29, 2019, 23:59

SEE WEB SITE: latemar.science.unitn.it

http://www.rgagnon.com/javadetails/java-0014.html
https://www.mkyong.com/java/how-to-execute-shell-command-from-java/
https://www.baeldung.com/run-shell-command-in-java

https is a URI scheme which is syntactically identical to the http:
scheme normally used for accessing resources using HTTP. Using an
https: URL indicates that HTTP is to be used, but with a different default
port (443) and an additional encryption/authentication layer between
HTTP and TCP.

This system was developed by Netscape Communications Corporation
to provide authentication and encrypted communication and is widely
used on the World Wide Web for security-sensitive communication,
such as payment transactions.

Secure hypertext transfer protocol' (S-HTTP) is an alternative
mechanism to the https URI scheme for encrypting web
communications carried over HTTP. S-HTTP is defined in RFC
2660.

Web browsers typically use HTTP to communicate with web servers,
sending and receiving information without encrypting it. For sensitive
transactions, such as Internet e-commerce or online access to financial
accounts, the browser and server must encrypt this information.

The https: URI scheme and S-HTTP were both defined in the mid 1990s
to address this need. Netscape and Microsoft supported HTTPS rather
than S-HTTP, leading to HTTPS becoming the de facto standard
mechanism for securing web communications. S-HTTP is an alternative
mechanism that is not widely used.

HTTPS
HTTP + SSL

Slides from HTTP vs. HTTPS by Eng. T. Aldaldooh

Figure 4.10 p

The SSL protocol inserts itself
between an application like HTTP and
the TCP transport layer. TCP sees SSL
as just another application, and HTTP
communicates with SSL much the
same as it does with TCP.

HTTPS

Standard HTTP

HTTP

> 3 =

IP

=

Network Technology

=

HTTP Secured with SSL

Network Technology

=

Cryptography

Important information Data, Data, Data.

Plain Text

S|l)
L

Some random String

Hh2sh!~hH==E#@ns86/76% ===sdf

Cipher Text

Cryptography cont.

Important information Data, Data, Data.

Symmetric Key

=

Some random String

Hh2sh!~hH==E#@ns86/76% ===sdf

"ejeq ‘ejeq ‘ejeq uoneuw.ojul yueliodws

JPS===9%9/98SU@ #I==HY~iYscyH

Public
Key

Asymmetric (public-key) encryption

"eyjeq ‘ejeq ‘ejeq uoneuw.ojui jueliodwt

SSL Session

e Uses asymmetric encryption to
privately share the session key

— Asymmetric has a lot of overhead

e Uses symmetric encryption to
encrypt data

- Symmetric encryption is quicker and
uses less resource

SSL Handshake Process |rféj

Client requests HTTPS session

Certificate sent back (with public key)

53

Encrypted session key sent to server
X$qp0

Session encrypted with
symmetric session key (53)

l_\‘ =~ - /3 -
|-—M e Facebook » | /8, Untrusted Connection x | + !
N)
"‘; f 7 fe > - -
ﬂ ‘ (- | = | &8 https://www.gcc.gov.ps/index.php?option=com_gcclogin
[W = oy
a | I General Media Feeds ces:
Web Site Identity This Connection is Untrusted
Web site: mail.google.con
I Ow) 3 You have asked Firefox to connect securely to www.gcc.gov.ps, but we can't confirm that your
M| nee This web site do connection is secure.
Verified by: Thawte Consulti
Normally, when you try to connect securely, sites will present trusted identification to prove
that you are going to the right place. However, this site's identity can't be verified.
" 0:47:82:75:3A:9B:B9
; What Should I Do?
il Privacy & History
Have I visited this web site prior If you usually connect to this site without problems, this error could mean that someone is
Is this web site storing informati trying to impersonate the site, and you shouldn’t continue.
computer?
L [Get me out of here!]
Have I saved any passwords for
Technical Details
Technical Details
Connection Encrypted: High-g www.gcc.gov.ps uses an invalid security certificate.
S 7:C4:4C:4D:44:9D:CF:25:8C:D5:34
L e B o T The certificate is not trusted because the issuer certificate is not trusted. C:5F:96:DB:CF:B6:6F
Encryption makes it very difficul It 1
computers. It is therefore very u (Error code: sec_error_untrusted_issuer)
MS
N I Understand the Risks
number authc
Gma If you understand what's going on, you can tell Firefox to start trusting this site's |
friend - identification. Even if you trust the site, this error could mean that someone is tampering with
} abu k your connection.
L BT info Don't add an exception unless you know there's a good reason why this site doesn't use
trusted identification.
¥ ot # e
[Add Exception...

_ -

Latest News from Gmak
C 300 UNSAC B8 ¥ ee—Cy

1972 & S 1R, 3 S
Santa 0pewd up e Ho Ho Hotine and teamed Fui%3D28&service=mail&rm=f M C'}
up wih 3 10 send personalized hobday phone

. Google

Man-in-the-Middle (MITM) Attack
Concept

e There were away to get around the encryption
instead oOf trying to break it

Ea ‘ Ec ‘
Do o ———

E{a,b,c} = Ali’s, Ahmed’s, and Man’s public keys, respectively

e Ali wants to send secure messages to Ahmed.
e Man intercepts Ali's messages.

e Man talks to Ali and pretends to be Ahmed.

e Man talks to Ahmed and pretends to be Ali.

MITM Attack Concept

e Ali uses the public key she thinks she
received from Ahmed (Man’s)

e Ahmed uses the key he thinks is Ali’s
(also Man'’s)

e As a result, Man not only gains
access to secure information but also
can modify it (e.qg. transfer money to
a different account etc.)

MITM and Certificates

e Digital Certificates designed to solve
the problem but do they always help ?

« The MITM would have to create his own
certificate with a private/public key.

* He still sit between client and server, acting
as server to the client and client to the server,

listening in on everything sent between the
two.

The solution “chain of trust”

e To verify the authenticity and identity of the certificates
themselves.

e linked back to a trustworthy source of certificates.

e Web browsers and operating systems will only trust
certificates that directly or indirectly link back to one of a
handful of CAs, the "root CAs."

* Any certificate that doesn't link back to a root CA such as a self-
signed certificate will generate a big scary warning in the browser.

 How to create a self-signed SSL Certificate ...
o http://www.akadia.com/services/ssh_test_certificate.html

Conclusion

e HTTPS only slightly slower than
HTTP.

Reference

HTTP Essentials Protocols for Secure, Scaleable Web Sites by
Stephen Thomas .
HTTP The Definitive Guide.

View HTTP Request and Response Header < http://web-
sniffer.net/ >

