
HTTP, HTTPS and
TCP Networking in Java

Some reminders

Credits

Some material derived from:
•  HTTP vs. HTTPS by Eng. T. Aldaldooh

RFC

Request for Comments (RFC) are a type of
publication from the Internet Engineering Task
Force (IETF) and the Internet Society (ISOC), the
principal technical development and standards-
setting bodies for the Internet.
•  An RFC is authored by engineers and computer

scientists in the form of a memorandum
describing methods, behaviors, research, or
innovations applicable to the working of the
Internet and Internet-connected systems. I

Protocol

•  Synonymous of Etiquette
a code of behavior that delineates
expectations for social behavior according to
contemporary conventional norms within a
society, social class, or group.

Communications protocol, a set of rules
and regulations that determine how data is
transmitted in telecommunications and
computer networking

Port

Mistranslated into Italian as “Porta” (door)

A port is an endpoint of communication in an operating system.

A process associates its input or output channels, via an Internet socket,
 with a transport protocol, a port number, and an IP address.

This process is known as binding,

PID PORT IP Protocol
84 21 193.205.196.130 FTP
78 80 193.205.196.130 HTTP
321 8080 193.205.196.130 HTTP
541 25 193.205.196.130 SMTP

HTTP on port 80
•  HTTP with SSL (HTTPS) on port 443
•  FTP on port 21
•  SMTP on port 25
•  POP on port 110
•  SSH on port 22

•  URLs used early on by all Internet protocols,

including various document retrieval protocols.

•  More specifications (both from 1994):
–  URL : Uniform Resource Locators - RFC 1738.

–  URI : Universal Resource Identifiers - RFC 1630.

URL is just one type of a URI.

URL and URI

•  URL (Uniform Resource Locators)
–  Provides single short string to identify network-accessible resource

–  <scheme>://<host>[:<port>]/<path>[?<query>]

–  http://www.w3.org/Icons/w3c_home.gif

•  URI (Uniform Resource Identifier)
–  Identifies a resource either by location or name.

–  The selection of the representation can be determined by the web server

through HTTP content negotiation.

–  A superset of URLs

–  http://www.w3.org/Icons/w3c_home.

–  http request line contains a non-URL URI

URLS and URIS

•  URL: identify resources by specifying their locations

in the context of a particular access protocol, such as

HTTP or FTP.

•  URN: persistent, location-independent identifiers

•  URC: standardized representation of document

properties, such as owner, encoding, access

restrictions or cost.

URL, URN, URC

•  URN are not locators, are not required to be associated with

a particular protocol or access method, and need not be

resolvable.

•  They should be assigned by a procedure which provides

some assurance that they will remain unique and

identify the same resource persistently over a prolonged

period.

•  A typical URN namespace is urn:isbn, for International

Standard Book Numbers.

 URN

URLs cont.

URLs cont.
•  Protocol: Identifies the application protocol needed to access the

resource, in this case HTTP.
•  Username : If the protocol supports the concept of user names, this

provides a user name that has access to the resource; in the example
“guest.”

•  Password: The password associated with the user name, “secret” in
the example.

•  Host : The communication system that has the resource; for HTTP this
is the Web server, www.ietf.org in the example.

•  Port : The TCP port that the application protocols should use to access
the resource; many protocols have an implied TCP port (for HTTP that
port is 80

•  Path : The path through a hierarchical organization under which the
resource is located, often a file system’s directory structure or
equivalent.

•  File: The resource itself.
•  Query: Additional information about the resource or the client.
•  Fragment: A particular location within a resource.

•  URLs point to resources (“content”).

•  Resources are represented using different Internet Media Types (MIME

Types)

–  Multipurpose Internet Mail Extensions RFC 2045,6

•  MIME Type tells how content should be handled

–  File extensions are mapped to certain MIME Types

•  .html usually means a MIME Type of text/html

•  .jpg usually means a MIME Type of image/jpeg

•  The most common MIME Types used on the Web come from the text, image

and application top-level groups

•  text/html, text/css

•  image/gif, image/jpeg, image/png

•  application/pdf, application/octet-stream

•  application/x-javascript, application/x-shockwave-flash

URL and MIME type

•  Hyper Text Transfer Protocol

•  One of the application layer protocols that make up the

Internet
•  HTTP over TCP/IP

•  Like SMTP, POP, IMAP, NNTP, FTP, etc.

•  The underlying language of the Web

•  Three versions have been used, two are in common use

and have been specified:
•  RFC 1945 HTTP 1.0 (1996)

•  RFC 2616 HTTP 1.1 (1999)

An Introduction to HTTP

HTTP and TCP/IP

HTTP sits atop the TCP/IP Protocol Stack

Network Interfaces

HTTP

TCP

IP

Application Layer

Transport Layer

Network Layer

Data Link Layer

HTTP

•  The Hypertext Transfer Protocol
•  distributed, collaborative, hypermedia

information systems.
•  HTTP functions as a request-response protocol

in the client-server computing model.
•  Actors:

–  Internet Engineering Task Force (IETF)
–  World Wide Web Consortium (W3C)

RFC
RFC 2616 (June 1999) defined HTTP/1.1

In June 2014, RFC 2616 was retired and HTTP/1.1 was
redefined by
•  RFC 7230 - HTTP/1.1: Message Syntax and Routing
•  RFC 7231 - HTTP/1.1: Semantics and Content
•  RFC 7232 - HTTP/1.1: Conditional Requests
•  RFC 7233 - HTTP/1.1: Range Requests
•  RFC 7234 - HTTP/1.1: Caching
•  RFC 7235 - HTTP/1.1: Authentication

HTTP 2.0 Current Status

• May 2015 RFC 7540

• May 2015 RFC 7541 (HPACK)

•  User agent (client) issues an HTTP request to a host
(server) for a given resource using its URL

•  Server “resolves” the URL, acts on the resource

•  Server sends an HTTP response back to the client

•  Each request is discontinuous with all previous
requests – HTTP is stateless

HTTP servers turn URLs into resources through a
request-response cycle

HTTP Request

HTTP Client

Asks for resource by its URL:

http://www.Site.com/test.html HTTP Server
www.Site.com

HTTP Response
Resource

/test

•  HTTP requests and responses are both types of Internet
Messages (RFC 822), and share a general format:
–  A Start Line, followed by a CRLF

•  Request Line for requests
•  Status Line for responses

–  Zero or more Message Headers
•  field-name “:” [field-value] CRLF

–  An empty line
•  Two CRLFs mark the end of the Headers

–  An optional Message Body if there is a payload
•  All or part of the “Entity Body” or “Entity”

 HTTP requests and responses Messages

HTTP Requests

GET / HTTP/1.1[CRLF]
Host: www.iugaza.edu.ps[CRLF]
Connection: close[CRLF]
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)[CRLF]
Accept-Encoding: gzip[CRLF]
Accept-Charset: ISO-8859-1,UTF-8;q=0.7,*;q=0.7[CRLF]
Cache-Control: no-cache[CRLF]
Accept-Language: de,en;q=0.7,en-us;q=0.3[CRLF]
Referer: http://web-sniffer.net/[CRLF] [CRLF]

•  GET

–  By far most common method

–  Retrieves a resource from the server

–  Supports passing of query string arguments

•  HEAD

–  Retrieves only the Headers associated with a resource but not the entity itself

–  Highly useful for protocol analysis, diagnostics

•  POST

–  Allows passing of data in entity rather than URL

–  Can transmit of far larger arguments that GET

–  Arguments not displayed on the URL

A Closer Look at the Request Methods

•  OPTIONS
–  Shows methods available for use on the resource (if given a path) or the host (if given a “*”)

•  TRACE
–  Diagnostic method for assessing the impact of proxies along the request-response chain

•  PUT, DELETE
–  Used in HTTP publishing (e.g., WebDav)

•  CONNECT
–  A common extension method for Tunneling other protocols through HTTP

More Request Methods, cont.

Web-based Distributed Authoring and Versioning (WebDAV) is a
set of methods based on the Hypertext Transfer Protocol (HTTP)
that facilitates collaboration between users in editing and
managing documents and files stored on World Wide Web
servers.

HTTP Responses

HTTP/1.1 302 Moved Temporarly [CRLF]
Cache-Control: private[CRLF]
Content-Type: text/html; charset=utf-8 [CRLF]
Location: http://www.iugaza.edu.ps/ar [CRLF]
Server: Microsoft-IIS/7.0 [CRLF]
X-AspNet-Version: 2.0.50727 [CRLF]
X-Powered-By: ASP.NET [CRLF]
Date: Sat, 24 Dec 2011 19:00:27 GMT [CRLF]
Connection: close [CRLF]
Content-Length: 519 [CRLF] [CRLF]

http://web-sniffer.net/

•  Consists of three major parts:

•  The HTTP Version
–  Just like third part of Request Line

•  Status Code
–  5 groups of 3 digit integers indicating the result of the attempt to satisfy the

request:

–  1xx are informational

–  2xx are success codes

–  3xx are for alternate resource locations (redirects)

–  4xx indicate client side errors

–  5xx indicate server side errors

•  The Reason Phrase followed by the CRLF
–  Short textual description of the status code

A Closer Look at the Status Line

A Closer Look at the Status Line

• Open a TCP connection to a host
• Can borrow telnet protocol to do this, by

pointing it at the default HTTP port (80)
• C:\>telnet www.google.com 80

•  Ask for a resource using a minimal
request syntax:

• GET / HTTP/1.1 <CRLF>
• Host: www.google.ps <CRLF><CRLF>

•  A Host header is required for HTTP 1.1
connections, though not for HTTP 1.0

Making a simple HTTP request using Telnet

A Closer Look at HTTP Headers
 Headers come in four major types, some

for requests, some for responses, some for
both:

–  General Headers

•  Provide info about messages of both
kinds

–  Request Headers
•  Provide request-specific info

–  Response Headers
•  Provide response-specific info

–  Entity Headers
•  Provide info about request and response

entities
–  Extension headers are also possible

•  Connection – lets clients and servers manage connection state
–  Connection: Keep-Alive

–  Connection: close

•  Date – when the message was created
–  Date: Sat, 31-May-03 15:00:00 GMT

•  Via – shows proxies that handled message
–  Via: 1.1 www.myproxy.com (Squid/1.4)

•  Cache-Control – Among the most complex of headers, enables caching

directives
–  Cache-Control: no-cache

General Headers

•  Host – The hostname (and optionally port) of server to which
request is being sent

•  Referer – The URL of the resource from which the current request
URI came
–  Referer: http://www.host.com/login.asp

•  User-Agent – Name of the requesting application, used in
browser sensing
–  User-Agent: Mozilla/4.0 (Compatible; MSIE 6.0)

•  Accept and its variants – Inform servers of client’s capabilities
and preferences
–  Enables content negotiation
–  Accept: image/gif, image/jpeg;q=0.5
–  Accept- variants for Language, Encoding, Charset

•  Cookie How clients pass cookies back to the servers that set
them
–  Cookie: id=23432;level=3

Request Headers

•  Server – The server’s name and version
–  Server: Microsoft-IIS/5.0
–  Can be problematic for security reasons

•  Set-Cookie – This is how a server sets a cookie on a client

–  Set-Cookie: id=234; path=/shop; expires=Sat, 31-May-03
15:00:00 GMT; secure

Response Headers

•  Allow – Lists the request methods that can be used on the entity
–  Allow: GET, HEAD, POST

•  Location – Gives the alternate or new location of the entity
–  Used with 3xx response codes (redirects)

–  Location: http://www.iugaza.edu.ps/ar/

•  Content-Encoding – specifies encoding performed on the body of the

response
–  Used with HTTP compression

–  Corresponds to Accept-Encoding request header

–  Content-Encoding: gzip

•  Content-Length – The size of the entity body in bytes
•  Content-Location – The actual if different than its request URL

•  Content-Type – specifies Media (MIME) type of the entity body

Entity Headers

HTTP Overview

HTTP Requests
An HTTP request consists of
a request method, (“subprotocol” specification)
a request URL, (location)
header fields, (metadata)
a body. (data)

HTTP 1.1 defines the following request methods:
• GET: Retrieves the resource identified by the request URL
• HEAD: Returns the headers identified by the request URL
• POST: Sends data of unlimited length to the Web server
• PUT: Stores a resource under the request URL
• DELETE: Removes the resource identified by the request URL
• OPTIONS: Returns the HTTP methods the server supports
• TRACE: Returns the header fields sent with the TRACE request
•  CONNECT request connection to a transparent TCP/IP tunnel,
•  PATCH apply partial modifications to a resource.

HTTP 1.0 includes only the GET, HEAD, and POST methods.

