
Intro to SPA framework
Modified from a presentation by

Jussi Pohjolainen

Rise of the Responsive Single Page App

Image: http://johnpolacek.github.io/scrolldeck.js/decks/responsive/

http://johnpolacek.github.io/scrolldeck.js/decks/responsive/

Responsive

• Unified across
experiences

• Can be embedded as
mobile app

• Better deployment and
& maintanence

• Mobile users need to
get access to everything

Image: http://coenraets.org/blog/wp--content/uploads/2011/10/directory11.png

http://coenraets.org/blog/wp-

Single--page Applications (SPA)

• Web app that fits on a single web page
– Fluid UX, like desktop app
– Examples like Gmail, Google maps

• Html page contains mini--views (HTML
Fragments) that can be loaded in the
background

• No reloading of the page,
• Requires handling of browser history,

navigation and bookmarks

JavaScript

• SPAs are implemented using JavaScript and
HTML

Challenges in SPA
• DOM Manipulation

– How to manipulate the view efficiently?
• History

– What happens when pressing back button?
• Routing

– Readable URLs?
• Data Binding

– How bind data from model to view?
• View Loading

– How to load the view?
• Lot of coding! You could use a framework instead ...

Single-page Application

Single page apps typically have
“application like” interaction
dynamic data loading from the server-side API
fluid transitions between page states
more JavaScript than actual HTML

They typically do not have
support for crawlers (not for sites relying on search traffic)
support for legacy browsers (IE7 or older, dumbphone browsers)

SPAs Are Good For …

• “App-like user experience”
• Binding to your own (or 3rd party) RESTful API
• Replacement for Flash or Java in your web

pages
• Hybrid (native) HTML5 applications
• Mobile version of your web site

The SPA sweet spot is likely not on web sites,
but on content-rich cross-platform mobile apps

PJAX

Pjax is a technique that allows you to
progressively enhance normal links on a page so
that clicks result in the linked content being
loaded via Ajax and the URL being updated using
HTML5 pushState, avoiding a full page load.
In browsers that don't support pushState or that
have JavaScript disabled, link clicks will result in
a normal full page load. The Pjax Utility makes it
easy to add this functionality to existing pages.

http://yuilibrary.com/yui/docs/pjax/

http://yuilibrary.com/yui/docs/pjax/

SPAs and Other Web App Architectures
Server-side Server-side + AJAX PJAX SPA

What Server round-trip on
every app state
change

Render initial page
on server, state
changes on the client

Render initial page
on server, state
changes on server,
inject into DOM on
client-side

Serve static page
skeleton from
server; render every
change on client-side

How UI code on server;
links & form posting

UI code on both
ends; AJAX calls, ugly
server API

UI code on server,
client to inject HTTP,
server API if you like

UI code on client,
server API

Ease of development

UX & responsiveness

Robots & old
browsers

Who’s using it? Amazon, Wikipedia;
banks, media sites
etc.

Facebook?;
widgets, search

Twitter, Basecamp,
GitHub

Google+, Gmail, FT;
mobile sites, startups

FROM: LAURI SVAN

Lifecycle of new JS frameworks
There appears to be a
quick ascent, as the
framework gains
popularity and then a
slightly less quick but
steady decline as
developers adopt
newer technologies.
These lifecycles only
last a couple of years.

Jquery, Angular JS, Angular, React

ANGULAR_JS

Angular JS

• Single Page App Framework for JavaScript
• Implements client--side MVC pattern
– Separation of presentation from business logic

and presentation state

• No direct DOM manipulation, less code
• Support for all major browsers
• Supported by Google
• Large and fast growing community

AngularJS – Main Concepts

• Templates
• Directives
• Expressions
• Data binding
• Scope

• Controllers
• Modules
• Filters
• Services
• Routing

Anatomy of a Backbone SPA
• Application as a

‘singleton’ reference
holder

• Router handles the
navigation and toggles
between views

• Models synchronize with
Server API

• Bulk of the code in views
• All HTML in templates

Model /
Controller

View Template

emits
 events

changes
using

changes
instantiates

using

Backend

DOM

synchronizes
changes with

Application

Router

initializes

toggles

FROM: LAURI SVAN

From Gary Arora

SPA Client-Server Communication
• HTML and all the assets are

loaded in first request
• Additional data is fetched

over XMLHTTPRequest
• If you want to go real-time,

WebSockets (socket.io) can
help you

• When it gets slow, cluster
the backend behind a
caching reverse proxy like
Varnish

Storage

Business Logic

Browser

Presentation / Server API

XMLHTTP-
Request WebSocket

HTTP
Server

Browser
(page load)

REST API Socket
API

Data
storage

Business
Logic

HTTP / * HTTP / JSON TCP / JSON

Auth & Access
Control

FROM: LAURI SVAN

http://socket.io/
https://www.varnish-software.com/

HOW IT WORKS?

From Rouson

HOW IT WORKS?

From Rouson

GETTING STARTED WITH
ANGULAR_JS

Basic Concepts

• 1) Templates
– HTML with additional markup, directives,

expressions, filters ...
• 2) Directives
– Extend HTML using ng-app, ng-bind, ng-model

• 3) Filters
– Filter the output: filter, orderBy, uppercase

• 4) Data Binding
– Bind model to view using expressions {{ }}

First Example – Template
<!DOCTYPE html>
<html>
<head>
<title>Title</title>
<meta charset="UTF-8" />
<style media="screen"></style>
<script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/angu
lar.min.js"></script>
</head>
<body>
<div ng-app>

<!-- store the value of input field into a variable name -->
<p>Name: <input type="text" ng-model="name"></p>
<!-- display the variable name inside (innerHTML) of p -->
<p ng-bind="name"></p>
</div>
</body>
</html>

Template

2) Directives

• Directives apply special behavior to attributes or
elements in HTML
– Attach behaviour, transform the DOM

• Some directives
– ng-app

• Initializes the app
– ng-model

• Stores/updates the value of the input field into a variable
– ng-bind

• Replace the text content of the specified HTML with the
value of given expression

About Naming

• AngularJS HTML Compiler supports multiple
formats
– ng-bind

• Recommended Format

– data-ng-bind
• Recommended Format to support HTML validation

– ng_bind, ng:bind, x-ng-bind
• Legacy, don't use

Lots of Built in Directives

• ngApp

• ngClick

• ngController

• ngModel

• ngRepeat

• ngSubmit

• ngDblClick

• ngMouseEnter

• ngMouseMove

• ngMouseLeave
• ngKeyDown

• ngForm

2) Expressions

• Angular expressions are JavaScript--like code
snippets that are usually placed in bindings
– {{ expression }}.

• Valid Expressions
– {{ 1 + 2 }}

– {{ a + b }}

– {{ items[index] }}

• Control flow (loops, if) are not supported!
• You can use filters to format or filter data

3) Filter

• With filter, you can format or filter the output
• Formatting
– currency, number, date, lowercase,
uppercase

• Filtering
– filter, limitTo

• Other
– orderBy, json

API Reference
https://docs.angularjs.org/api/ng/filter/filter

https://docs.angularjs.org/api/ng/filter/filter

