JNDI

Java Naming and Directory Interface

See also:
http://docs.oracle.com/javase/indi/tutorial/

http://docs.oracle.com/javase/jndi/tutorial/

(e e o 20
|]] a‘ |' Application Facade \o
; 1 e e S e N B B S e .
=> A N N ” R 5 N
gs Business \/ Business \ Business \
= Workflow /J\ Components /| Entities
_ 4
it N
.SE "Data Access |/ Data Helpers/\| Service \\I
gs \ Components A\ Utilities A Agents
. J

Data
Sources

Ul Components

Ul Process Components

PRESENTATION
LAYER

Naming service

A naming service is an entity that

cassociates names with objects.We call this binding names to
objects. This is similar to atelephone company s associating a
person ‘s name with a specific residence s telephone number

provides a facility to find an object based on a name.We
call this looking up or searching for an object.This is similar to
a telephone operator finding a person s telephone number based on
that person s name and connecting the two people.

In general,a naming service can be used to find any kind of generic
object, like a file handle on your hard drive or a printer located across
the network.

Directory service

A directory object differs from a generic object because you
can store attributes with directory objects. For example,you
can use a directory object to represent auser in your company. You
can store information about that user,like the user § password,as
attributes in the directory object.

A directory service is a naming service that has been
extended and enhanced to provide directory object
operations for manipulating attributes.

A directory is a system of directory objects that are all

connected. Some examples of directory products are Netscape
Directory Server and Microsoft § Active Directory.

Directory service

Directories are similar to DataBases, except that they
typically are organized in a hierarchical tree-like structure.
Typically they are optimized forreading.

Person 1

People

Person 2

My Company Printer 1

U
4 Printers /

Computers

§| Fax Machines \

‘& Fax Machine 1

Computer 1

Network
Services

Computer 2

Examples of Directory services

Azure Active Directory (Microsoft)

Lotus Notes (IBM)
LDAP (Lightweight Directory Access Protocol)

See also https.//en.wikipedia.org/wiki/Directory service

JNDI concepts

JNDI is asystem for Java-based clients to interact with naming and
directory systems. JNDI is a bridge over naming and directory
services, that provides one common interface to disparate directories.

Users who need to access an LDAP directory use the same API as
users who want to access an N1S directory or Novell’s directory. All
directory operations are done through the JNDI

interface, providing a common framewortk.

JNDI advantages

-You only need to learn a single APl to access all sorts of directory
service information, such as security credentials, phone numbers,
electronic and postal mail addresses, application preferences,
network addresses, machine configurations, and more.

-JNDI insulates the application from protocol and implementation
details.

-You can use JNDI to read and write whole Java objects from
directories.

- You can link different types of directories, such as an LDAP
directory with an NDS directory, and have the combination appear to
be one large, federated directory.

JNDI advantages

Applications can store factory objects and configuration variables in a global
naming tree using the JNDI API.

JNDI, the Java Naming and Directory Interface, provides a global memory
tree to store and lookup configuration objects. JNDI will typically contain
configured Factory objects.

JNDI lets applications cleanly separate configuration from the
implementation. The application will grab the configured factory object using
JNDI and use the factory to find and create the resource objects.

In a typical example, the application will grab a database DataSource to
create JDBC Connections. Because the configuration is left to the
configuration files, it's easy for the application to change databases for
different customers.

JNDI Architecture

Java Application

Naming Manager

JNDI API

JNDI SPI

JNDI
CORBA Implementation
il Possibilities

‘ ‘ _ ;

JNDI concepts

An atomic name is asimple,basic,indivisible component of a

name.For example,in the string /etc/fstab ,etc and fstab are atomic
names.

A binding is an association of aname with an object.

A context is an object that contains zero or more bindings. Each
binding has a distinct atomic name. Each of the mtab and exports
atomic names is bound to afile on the hard disk.

A compound name is zero or more atomic names put together. e.g.
the entire string /etc/fstab is a compound name. Note that a
compound name consists of multiple bindings.

JNDI names

JNDI names look like URLSs.
A typical name for a database pool is java:comp/env/jdbc/test.

The java: scheme is a memory-based tree. comp/env is the
standard location for Java configuration objects and jdbc is the

standard location for database pools.

Examples

Java:.comp/env Configuration environment
Java:comp/env/jdbc JDBC DataSource pools
Java:comp/env/ejb EJB remote home interfaces
Java:comp/env/cmp EJB local home interfaces (non-standard)
Java:comp/env/ims JMS connection factories
Java:comp/env/mail JavaMail connection factories
Jjava:comp/env/url URL connection factories java:comp/
UserTransaction UserTransaction interface

Contexts and Subcontexts

A naming system is a connected set of contexts.

A namespace is all the names contained
within naming system.

The starting point of exploring a namespace
is called an initial context. An initial context
is the first context you happen to use.

* Binding with the name
ust.

* Also a context that
contains other bindings.

N

* Binding with the
name people.
* Also a subcontext

that contains other
bindings.

To acquire an initial context, you use an
initial context factory.

An initial context factory basically is your
JNDI driver.

V

. Bindin? with the
name focal.

* Also a subcontext
that contains other
bindings.

|
* Binding with the v
name bin.
* Also a subcontext
that contains other

bindings.

Acquiring an initial context

When you acquire an initial context, you must supply the
necessary information for JNDI to acquire that initial context.

For example, if you’re trying to access a JNDI implementation
that runs within a given server, you might supply:

- The IP address of the server

- The port number that the server accepts

- The starting location within the JNDI tree
- Any username/password necessary to use the server

Acquiring an initial context

package examples;

public class InitCtx {

public static void main(String args[]) throws Exception {
I/l Form an Initial Context

javax.naming.Context ctx =
new javax.naming.lnitialContext();
System.err.printin("Success!");

Object result = ctx.lookup("PermissionManager");

}
}

java
-Djava.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

-Djava.naming.provider.url=jnp://193.205.194.162:1099

-Djava.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
examples.InitCtx

Acquiring an initial context

java.naming.factory.initial: The name of the environment property for specifying the
in’itial context factory to use. The value of the property should be the fully qualified
class name of the factory class that will create an initial context.

java.naming.provider.url: The name of the environment property for specifying the
location of the service provider the client will use. The NamingContextFactory class

uses this information to know which server to connect to. The value of the property
should be a URL string

Everything but the host component is optional. The following examples are equivalent
because the default port value(on JBOSS) is 4447 (used to be 1099).
remote://lwww.jboss.org:4447/

www.jboss.org:4447

used to be: jnp://lwww.jboss.org:1099/

Acquiring an initial context

ja.va.naming.factory.url.pkgs:

The name of the environment property for specifying the list of
package prefixes to use when loading in URL context factories.
The value of the property should be a colon-separated list of
package prefixes for the class name of the factory class that will
create a URL context factory.

For the JBoss JNDI provider this must be
org.jboss.ejb.client.naming

(used to be: org.jboss.naming:org.jnp.interfaces).

This property is essential for locating the remote: and java: URL
context factories of the JBoss JNDI provider.

Operations on a JNDI context

list() retrieves a list of contents available at the current
context. This typically includes names of objects bound to the
JNDI tree,as well as subcontexts.

lookup() moves from one context to another context,such as
going from c:\ to c:\windows. You can also use lookup()to look
up objects bound to the JNDI tree. The return type of
lookup()is JNDI driver specific.

rename() gives a context a new name

Operations on a JNDI context

createSubcontext()creates a subcontext from the current
context,such as creating c:\foo \bar from the folder c:\foo.

destroySubcontext()destroys a subcontext from the current
context,such as destroying c:\foo \bar from the folder c:\foo.

bind()writes something to the JNDI tree at the current
context.As with lookup(),JNDI drivers accept different
parameters to bind().

rebind()is the same operation as bind,except it forces a bind
even if there is already something in the JNDI tree with the
same name.

JNDI Examples

Accessing rmiregistry

Using JNDI to access rmiregisty

see http://docs.oracle.com/javase/8/docs/technotes/quides/jndi/indi-rmi.html

private static void perr(Exception ex, String message) {
System.out.printin(message);
ex.printStackTrace();
System.exit(1);

package jndiaccesstormiregistry;

import java.util.Properties;

import javax.naming.CompositeName; }
import javax.naming.Context;

import javax.naming.InvalidNameException;
import javax.naming.LinkRef;

import javax.naming.NamingException;

import javax.naming.directory.InitialDirContext;

public class Demo {

public static void main(String[] args) {
Il Identify service provider to use
Properties env = new Properties();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.rmi.registry.RegistryContextFactory");
env.put(Context.PROVIDER_URL, "rmi://localhost:1099");

http://docs.oracle.com/javase/8/docs/technotes/guides/jndi/jndi-rmi.html

Using JNDI to access rmlreglsty

CompositeName cn=null;

try { cn = new CompositeName("foo"); } create the object to be stored:
catch (InvalidNameException ex) { perr(ex,"Invalid name!"); } ' in this case a (storable) type of
LinkRef Ir=new LinkRef(cn); String

Context ctx=null;
try { ctx = new InitialDirContext(env);} _
catch (NamingException ex) { perr(ex,”Invalid InitialDirContext!");}
String name= "myVar3";
try { Object o=ctx.lookup(name);}
catch (NamingException ex) { if the name is not yet registered,
System.out.printin(name+" is not registered"); register it
try { ctx.bind(name,lr); }
catch (NamingException ex1) { perr(ex,"Unable to bind "+name);}

}

LinkRef result=null;
try { result = (LinkRef)ctx.lookup(name) ;} _
catch (NamingException ex) { perr(ex,"Unable to lookup "+name);}
try { System.out.printin(result.getLinkName()); }

catch (NamingException ex) {perr(ex,"Unable to get name from LinkRef ");} | Printits value
try { ctx.close();}
catch (NamingException ex) {perr(ex,"Error on close");} close the connection

1}

Using JNDI to access rmiregisty

NOTE: we are forcing rmiregistry to do
something it wasn't designed for (storing strings)

rmiregistry is FLAT — no subcontexts!

An interesting additional reading about
rmiregistry:

http://www.drdobbs.com/jvm/a-remote-java-rmi-reqistry/212001090?pgno=1

http://www.drdobbs.com/jvm/a-remote-java-rmi-registry/212001090?pgno=1

JNDI Examples

Accessing LDAP

A JNDI-LDAP
example

package jndiaccesstoldap;

Y

try {
Il Create the initial directory context
DirContext ctx = new InitialDirContext(env);

Il Ask for all attributes of the object

Attributes attrs = ctx.getAttributes("cn=Ronchetti Marco");

I/l Find the surname ("sn") and print it
System.out.printin("sn: " + attrs.get("sn").get());

Il Close the context when we're done
ctx.close();

} catch (NamingException e) {
System.err.printin("Problem getting attribute: " + e)

import javax.naming.Context;

import javax.naming.directory.InitialDirContext;
import javax.naming.directory.DirContext;
import javax.naming.directory.Attributes;
import javax.naming.NamingException;

import java.util. Hashtable;
public class Getattr {

public static void main(String[] args) {

Il ldentify service provider to use

Hashtable env = new Hashtable(11);
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");
llenv.put(Context.PROVIDER_URL, "Idap://Idap.unitn.it:389/0=JNDITutorial");
env.put(Context.PROVIDER_URL, "Idap://ldap.unitn.it:389/o=personale"”);

A J N DI exam Ie static void list(DirContext ctx, String listKey) throws Exception {
p NamingEnumeration<NameClassPair> cp = ctx.list(listKey);
while (cp.hasMore())

On an Open LDAP SyStem.Out.prinﬂnch.next());

public class Demo { } System.out.printin(®==s==s=s=s=ss====t),

public static void main(String[] args) throws Exception {
/I Identify service provider to use
Properties env = new Properties();
env.put(Context.INITIAL_CONTEXT_FACTORY,"com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "Idap://Idap.virginia.edu");
Il Create the initial directory context
DirContext ctx = new InitialDirContext(env);
list(ctx,"o=University of Virginia,c=US");
DirContext ctx1 = (DirContext) ctx.lookup("o=University of Virginia,c=US");
list(ctx1,"ou=Arts & Sciences Graduate");
DirContext ctx2 = (DirContext) ctx1.lookup("ou=Arts & Sciences Graduate");
list(ctx2,"ou=casg");
DirContext ctx3 = (DirContext) ctx2.lookup(“ou=casg");
Attributes attrs = ctx3.getAttributes("cn=Amy Marion Coddington (amc4gc)");
NamingEnumeration<? extends Attribute> ne = attrs.getAll();
while (ne.hasMore()) {
System.out.printin(ne.next());

}

ctx.close();

http://its.virginia.edu/network/publicldap.html

http://its.virginia.edu/network/publicldap.html

