Distributed Objects

An RMI implementation
- VERY IMPORTANT NOTES-



VERY IMPORTANT: Parameter passing

Java Standard:

void f(int x)

Parameter x is passed by copy

void g(Object k)

Parameter k and return value are passed by reference

Java RMI:

void h(Object k)

Parameter k is passed by copy!

UNLESS k is a REMOTE OBJECT (in which case it is passed
as a REMOTE REFERENCEE, i.e. its stub is copied if needed)



IMPORTANT: Parameter passing

Passing By-Value

When invoking a method using RMI,all parameters to the
remote method are passed by-value .This means that when a
client calls a server,all parameters are copied from one machine
to the other.

Passing by remote-reference

If you want to pass an object over the network by-reference, it
must be a remote object, and it must implement
java.rmi.Remote.A stub for the remote object is serialized and
passed to the remote host. The remote host can then use that
stub to invoke callbacks on your remote object. There is only
one copy of the object at any time,which means that all hosts
are calling the same object.



Serialization

e Any basic primitive type (int,char,and so on) is automatically
serialized with the object and is available when deserialized.

eJava objects can be included with the serialized or not:

e Objects marked with the transient keyword are not serialized
with the object and are not available when deserialized.

e Any object that is not marked with the transient keyword
must implement java.lang.Serializable .These objects are
converted to bit-blob format along with the original object. If
your Java objects are neither transient nor implement
java.lang.Serializable, a NotSerializable Exception is thrown
when writeObject()is called.



Serialization

e All serializable classes must declare a

private static final field named serialVersionUID

to guarantee serialization compatibility between versions.

If no previous version of the class has been released, then the
value of this field can be any long value, as long as the value is
used consistently in future versions.

private static final long serialVersionUID = 227L;



When not to Serialize

eThe object is large. Large objects may not be suitable for
serialization because operations you do with the serialized blob
may be very intensive. (one could save the blob to disk or
transporting the blob across the network)

e The object represents a resource that cannot be reconstructed
on the target machine.Some examples of such resources are
database connections and sockets.

e The object represents sensitive information that you do not
want to pass in a serialized stream..



Distributed Objects

An RMI implementation
- Addendum -



RMI-TIOP

m]

RMI-IIOP is a special version of RMI that is compliant with
CORBA.

RMI has some interesting features not available in RMI-
lIOP,such as distributed garbage collection, object
activation and downloadable class files.

EJB and J2EE mandate that you use RMI-IIOP, not RMI.
rmic —iiop generates IIOP stub and tie (instead of stub and
skeleton)

rmic —idl generates OMG IDL

See docs.oracle.com/javase/7/docs/technotes/tools/#rmi



Preparing and executing

NOTES :
starting from Java 2 the skeleton may not

exist (its functionality is absorbed by the
class file).

Starting from Java 5 the rmic functionality
has been absorbed by javac, so the whole
process becomes transparent (but even more
misterious...)

See docs.oracle.com/javase/tutorial/rmi/
for an example of current usage of rmi



Preparing and executing - security

The JDK security model requires code to be
granted specific permissions to be allowed to
perform certain operations.

You need to specify a policy file when you run
your server and client.

grant { permission java.net.SocketPermission "*:1024-65535",
"connect,accept";

permission java.io.FilePermission "c:\\..path.\\", "read"; };

java -Djava.security.policy=java.policy executableClass



Access to system properties

Nota: instead of specifiying a property at
runtime (-D switch of java command), You can
hardwire the property into the code:

-Djava.security.policy=java.policy
System.getProperties () .put(

"java.security.policy",
"java.policy") ;



