
Declarative Transactions

Transactions in EJB

Who begins a transaction?

Who begins a transaction? Who issues either a commit or abort?
This is called demarcating transactional boundaries .

There are three ways to demarcate transactions:
•programmatically:

you are responsible for issuing a begin statement and either a
commit or an abort statement.

•declaratively,
the EJB container intercepts the request and starts up a
transaction automatically on behalf of your bean.

•client-initiated.
write code to start and end the transaction from the client code
outside of your bean.

Programmatic vs. declarative

programmatic transactions:
your bean has full control over transactional boundaries.For
instance,you can use programmatic transactions to run a
series of minitransactions within a bean method.
When using programmatic transactions,always try to complete your
transactions in the same method that you began them.Doing
otherwise results in spaghetti code where it is difficult to track the
transactions;the performance decreases because the transaction is
held open longer.
declarative transactions:
your entire bean method must either run under a transaction
or not run under a transaction.
Transactions are simpler! (just declare them in the descriptor)

Client-initiated
Client initiated transactions:
A non-transactional remote client calls an enterprise bean that
performs its own transactions The bean succeeds in the
transaction,but the network or application server crashes
before the result is returned to a remote client.The remote
client would receive a Java RMI RemoteException indicating a
network error,but would not know whether the transaction
that took place in the enterprise bean was a success or a
failure.

With client-controlled transactions, if anything goes
wrong,the client will know about it.
The downside to client-controlled transactions is that if the
client is located far from the server, transactions are likely to
take a longer time and the efficiency will suffer.

Transactional Models
A flat transaction is the simplest transactional model to
understand.A flat transaction is a series of operations that are
performed atomically as a single unit of work .

A nested transaction allows you to embed atomic units of work
within other units of work.The unit of work that is nested
within another unit of work can roll back without forcing the
entire transaction to roll back. (subtransactions can
independently roll back without affecting higher transactions
in the tree)
(Not currently mandated by the EJB specification)

Other models: chained transactions and sagas.
(Not supported by the EJB specification)

EJB Transaction Attribute Values

Required
You want your method to always run in a transaction.
If a transaction is already running,your bean joins in on that
transaction. If no transaction is running,the EJB container
starts one for you.

Never
Your bean cannot be involved in a transaction.
If the client calls your bean in a transaction,the container
throws an exception back to the client
(java.rmi.RemoteException if
remote, javax.ejb.EJBException if local).

EJB Transaction Attribute Values

Supports
The method runs only in a transaction if the client had one
running already —it joins that transaction.
If the client does not have a transaction,the bean runs with no
transaction at all.

Mandatory
a transaction must be already running when your bean
method is called. If a transaction isn ’t running,
javax.ejb.TransactionRequiredException is thrown back to the
caller (or javax.ejb.TransactionRequiredLocalException if the
client is local).

EJB Transaction Attribute Values

NotSupported
your bean cannot be involved in a transaction at all.
For example,assume we have two enterprise beans,A and
B.Let ’s assume bean A begins a transaction and then calls
bean B. If bean B is using the NotSupported attribute,the
transaction that A started is suspended. None of B’s
operations are transactional,such as reads/writes to
databases. When B completes,A ’s transaction is resumed.

EJB Transaction Attribute Values

RequiresNew

You should use the RequiresNew attribute if you always want a
new transaction to begin when your bean is called. If a
transaction is already underway when your bean is called,that
transaction is suspended during the bean invocation.

The container then launches a new transaction and delegates
the call to the bean.The bean performs its operations and
eventually completes.The container then commits or aborts
the transaction and finally resumes the old transaction. If no
transaction is running when your bean is called,there is
nothing to suspend or resume.

EJB Transaction Attribute Values

TYPE PRECONDITION POSTCONDITION

Required NO transaction NEW
PRE-EXISTING PRE-EXISTING

RequiresNew NO transaction NEW
PRE-ESISTENTE NEW

Supports NO transaction NO transaction
PRE-EXISTING PRE-EXISTING

Mandatory NO transaction error
PRE-EXISTING PRE-EXISTING

NotSupported Nessuna transazione NO transaction
PRE-ESISTENTE NO transaction

Never NO transaction NO transaction
PRE-EXISTING error

Annotations
• @Stateless
• @TransactionManagement(javax.ejb.TransactonManagementType.CONTAI

NER)
• public class Mybean implements Myinterface{
• @PersistencyContext private EntityManager em;
• @Resource private SessionContext ctx;
• …
• @TransactionAttribute(javax.ejb.TransactonManagementType.REQUIRED)
• public void myTransactedMethod(){…
• if (…) ctx.setRollbackOnly;
• }
• }

EJB Transaction Attribute Values

<assembly-descriptor>
<container-transaction>
<method>

<ejb-name>Employee</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Mandatory</trans-attribute>
</container-transaction>
<container-transaction>
<method>

<ejb-name>Employee</ejb-name>
<method-name>setName</method-name>
<method-param>String</method-param>

</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>

</assembly-descriptor>

Dooming container-managed transactions

call setRollbackOnly() on your EJB context object.
If the transaction participant is not an Container Managed EJB component, you can
doom a transaction by looking up the JTA and calling the JTA ’s setRollbackOnly()
method,

Container-managed transactional beans can detect doomed transactions by calling
the getRollbackOnly()method on the EJB context object. If this method returns
true ,the transaction is doomed.

Isolation levels in EJB

BMT:
you specify isolation levels with your resource manager API (such as JDBC).
For example,you could call java.sql.Connection.SetTransactionIsolation(...).

CMT:
there is no way to specify isolation levels in the deployment descriptor.
You need to either use resource manager APIs (such as JDBC),or rely on your
container ’s tools or database ’s tools to specify isolation.

Isolation portability problems

Unfortunately, there is no way to specify isolation for container-
managed transactional beans in a portable way—you are reliant
on container and database tools.

This means if you have written an application, you cannot ship that application
with built-in isolation. The deployer now needs to know about transaction
isolation when he uses the container’s tools, and the deployer might not know a
whole lot about your application’s transactional behavior.

EJB Patterns

What is a pattern?

The best solution to a recurring problem”

Recurring software design problems
identified and catalogued in a standard way

so as to be accessibile to everybody and usable
in any programming language.

Singleton

• Ensure a class has only one instance and
provide a global point of access to it.

class Referee{
static Referee instance= null;
private Referee() {

String s = "";
}
public static Referee getReferee() {

if (instance ==null) instance=new Referee();
return instance;

}
public void whistle() {

//...
}

}

Singleton usage

package myPackage;

public class Game{
public static void main(String a[]) {

new Game ();
}

Game () {
//Referee a=new Referee (); // would give an error!
Referee b=Referee.getReferee();
Referee c=Referee.getReferee();
System.out.println(b==c);

}
}

Factory
Factories are used to encapsulate instantiation.

Client Service
Interface

Service Impl.

using a Simple Factory
1) you call a (possibly static) method in the factory. The call parameters tell
the factory which class to create.

2) the factory creates your object. All the objects it can create either have the
same parent class, or implement the same interface.

3) factory returns the object, the client expect is it to match the parent class
/interface.

Parent x=Factory.create(p);

class Factory{
static Parent create(Param p) {

if (p…) return new ChildA();
else return new ChildB();

}
}

SimpleFactory: isolate the code from
the concrete implementating class

BastardReferee FairReferee

Referee

Referee x=new BastardReferee();

Referee x=RefereeFactory.getReferee(bastardnessLevel);

If (bastardnesslevel==0)
Referee x=new FairReferee();

else
Referee x=new BastardReferee();

Example
SAXParserFactory factory = SAXParserFactory.newInstance(); // singleton
factory.setNamespaceAware(true);
SAXParser saxParser = factory.newSAXParser(); // simple factory

Factory method

Define an interface for creating an object, but let
subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation
to subclasses.

Factory method - example

The client:
Document x=null;
String choice=JOptionPane.showInputDialog("Choose Report (1) or Resume (2)", null);
if (choice.equals("1") x=ReportCreator.create();
if (choice.equals("2") x=DocumentCreator.create();

The factories:
abstract class DocumentCreator{

abstract Document create();
}
class ReportCreator extends DocumentCreator {

Document create() return new Report();
}
class ResumeCreator extends DocumentCreator {

Document create() return new Resume();
}

The products:
abstract class Document{…}
class Report extends Document{…}
class Resume extends Document{…}

Service Locator
Have an object that knows how to get hold of all of the services that an
application might need.

A service locator has a method that, given a key value, returns the
implementation of a service when one is needed.

Of course this just shifts the burden:
we still have to get the locator into the client,
but this scales well for multiple services.

Example: the rmi registry Client Service
Interface

Service Impl.

DAO – Data Access Object

DTO – Data Transfer Object

also known as Value Object or VO,
used to transfer data between software

application subsystems.
DTO's are often used in conjunction with DAOs

to retrieve data from a database.
DTOs do not have any behaviour except for

storage and retrieval of its own data (mutators
and accessor).

Session Facade

Uses a session bean to encapsulate the
complexity of interactions between the business
objects participating in a workflow.
Manages the business objects, and provides a
uniform coarse-grained service
access layer to clients

Local beans
@Local

Used to specify Local interface(s) of a session bean. This local
interface states the business methods of the session bean (which
can be stateless or stateful).

This interface is used to expose the business methods to local
clients, which are running in the same deployment/application as
EJB.

Mapping Session Facade on use cases

Business Delegate Pattern

Use a BusinessDelegate to
– Reduce coupling between presentation-tier and
business service components
– Hide the underlying implementation details of the
business service components
– Cache references to business services components
– Cache data
– Translate low level exceptions to application level
exceptions – Transparently retry failed transactions
– Can create dummy data for clients
Business Delegate is a plain java class

Use a ServiceLocator to
– Abstract naming service usage
– Shield complexity of service lookup and creation
– Promote reuse
– Enable optimize service lookup and creation functions
• Usually called within BusinessDelegate or Session Facade object

Service Locator

Service Locator
package ...; import ...;
public class ServiceLocator throws Exception {

private static ServiceLocator serviceLocator;

private static Context context;
private ServiceLocator() { context = getInitialContext(); }
private Context getInitialContext(){

Hashtable environment = new Hashtable();
environment.put(..);
return new InitialContext(environment);

} public static synchronized ServiceLocator getInstance(){
if (serviceLocator == null) {

serviceLocator = new ServiceLocator(); }
return serviceLocator;

}
public Object getBean(…) {return context.lookup(…)}

}

Overall view

Stateful and stateless beans

Let's play a bit…
package session;
import javax.ejb.Stateful;
@Stateful
public class StatefulSessionBean implements
StatefulSessionBeanRemote {

int counter=0;

@Override
public String ping() {

counter++;
return "SF hits ="+counter;

}
}

Let's play a bit…
package session;
import javax.ejb.Stateless;
@Stateless
public class StatelessSessionBean implements
StatefulSessionBeanRemote {

int counter=0;

@Override
public String ping() {

counter++;
return "SL hits ="+counter;

}
}

A client with stateful and stateless

package _client;
public class _Client {
public static void main(String[] args) throws NamingException {
Properties jndiProps = new Properties();
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

jndiProps.put(Context.URL_PKG_PREFIXES,"org.jboss.ejb.client.naming");
jndiProps.put(Context.PROVIDER_URL,

"remote://localhost:4447");
jndiProps.put(Context.SECURITY_PRINCIPAL, "user");
jndiProps.put(Context.SECURITY_CREDENTIALS, "pw");

jndiProps.put("jboss.naming.client.ejb.context", true);
Context ctx=new InitialContext(jndiProps);

A client with stateful and stateless
StatelessSessionBeanRemote bean = (StatelessSessionBeanRemote)

ctx.lookup("_Server/_Server-ejb/StatelessSessionBean!
session.StatelessSessionBeanRemote");

StatefulSessionBeanRemote sf_bean = (StatefulSessionBeanRemote)
ctx.lookup("_Server/_Server-ejb/StatefulSessionBean!
session.StatefulSessionBeanRemote");

StatelessSessionBeanRemote bean1 = (StatelessSessionBeanRemote)
ctx.lookup("_Server/_Server-ejb/StatelessSessionBean!
session.StatelessSessionBeanRemote");

StatefulSessionBeanRemote sf_bean1 = (StatefulSessionBeanRemote)
ctx.lookup("_Server/_Server-ejb/StatefulSessionBean!
session.StatefulSessionBeanRemote");

A client with stateful and stateless
System.out.println(bean.ping());
System.out.println(bean.ping());
System.out.println(bean.ping());
System.out.println(sf_bean.ping());
System.out.println(sf_bean.ping());
System.out.println(sf_bean.ping());
System.out.println(bean1.ping());
System.out.println(bean1.ping());
System.out.println(bean1.ping());
System.out.println(sf_bean1.ping());
System.out.println(sf_bean1.ping());
System.out.println(sf_bean1.ping());

}
}

Execution results
SL hits =1
SL hits =2
SL hits =3
SF hits =1
SF hits =2
SF hits =3
SL hits =4
SL hits =5
SL hits =6
SF hits =1
SF hits =2
SF hits =3

No instance variables in stateless!
package session;
import javax.ejb.Stateless;
@Stateless
public class StatelessSessionBean implements
StatefulSessionBeanRemote {

int counter=0;

@Override
public String ping() {

counter++;
return "SF hits ="+counter;

}
}

WRONG!

Passivation

Activation

Managing the lifecycle – 3.0
@Stateful
public class MyBean {
@PrePassivate

public void passivate() {
<close socket connections, etc...>
}
...

@PostActivate
public void activate() {
<open socket connections, etc...>
}
...

}

