
Advanced Persistency

Inheritance

Mapping inheritance

SINGLE TABLE PER CLASS
Id numPass numWhee

ls
make model

1 6 2 HORSE
CART

NULL

Id numPass numWhee
ls

make model accelerat
orType

2 1 2 HONDA HRC7 THROTTLE

etc.

Problems with polymorphism – how do you find
“all RoadVehicles that have less than 3 passenger?”

SINGLE TABLE PER CLASS HIERARCHY

Id numPass numWhe
els

make model DISC accelera
tortype

Boring
Factor

CoolF
actor

1 6 2 HORS
ECAR
T

NULL ROAD
VEHI
CLE

NULL NULL NULL

2 1 2 HOND
A

HRC7 MOTO
RCYC
LE

THROTTLE NULL NULL

3 4 4 FIAT PUNTO CAR PEDAL NULL NULL

4 2 4 FERR
ARI

F70 COUP
E

PEDAL 1 NULL

5 2 4 FORD KA ROAD
STER

PEDAL NULL 1

•Space inefficiency
•Impossible to set “NON-NULL” constraints on fields of the subclasses.

JOINED TABLES

Id DTYPE numPas
s

numWheel
s

make model

1 ROADVEHICLE 6 2 HORSECART NULL

2 MOTORCYCLE 1 2 HONDA HRC7

3 CAR 4 4 FIAT PUNTO

4 COUPE 2 4 FERRARI F70

5 ROADSTER 2 4 FORD KA

Id acceleratortype

3 PEDAL

4 PEDAL

5 PEDAL

Many joins in a deep inheritance hierarchy – time inefficiency.

Id boringFactor

4 1

RoadVehicle

Car Coupe

The base class
package examples.entity.single_table;
// imports go here
@Entity(name=”RoadVehicleSingle”)
@Table(name=”ROADVEHICLE”) //optional, it’s the default
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name=”DISC”,

discriminatorType=DiscriminatorType.STRING)
@DiscriminatorValue(“ROADVEHICLE”)
// @Inheritance(strategy=InheritanceType.JOINED)
public class RoadVehicle implements Serializable {

public enum AcceleratorType {PEDAL,THROTTLE};
@Id
protected int id;
protected int numPassengers;
protected int numWheels;
protected String make;
protected String model;
public RoadVehicle() {

id = (int) System.nanoTime();
}
// setters and getters go here
...

}

The derived class
package examples.entity.single_table;
// imports go here
@Entity
@DiscriminatorValue(“MOTORCYCLE”) //not needed for joined
public class Motorcycle extends RoadVehicle implements

Serializable {
public final AcceleratorType acceleratorType

=AcceleratorType.THROTTLE;
public Motorcycle() {

super();
numWheels = 2;
numPassengers = 2;

}
}

Advanced Persistency

Relationships

Multiplicity and Directionality – 7 types
Unidirectional Bidirectional

1:1

1:N

N:1

N:M

Watch out for side effects!

a oneBefore

b two

rel

a.setRel(two)

a oneAfter

b two

rel

Let rel be a 1:1 relationship

a one

two

b three

four

Let r be a 1:N relationship

a one

two

b three

four

a.setR(three)

r

r

Cascade-delete

a one

two

three

Order

When we delete “a”,
should also one,two e three
be canceled?

Shipment

Relation – 1:1 unidir – “from”
@Entity(name=”OrderUni”)
public class Order implements Serializable {

private int id;
private String orderName;
private Shipment shipment;
public Order() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
public void setId(int id) {
this.id = id;
}
...
// other setters and getters go here
...
@OneToOne(cascade={CascadeType.PERSIST})
public Shipment getShipment() {

return shipment;
}
public void setShipment(Shipment shipment) {

this.shipment = shipment;
}

}

Relation – 1:1 unidir – “to”
...
@Entity(name=”ShipmentUni”)
public class Shipment implements Serializable {

private int id;
private String city;
private String zipcode;
public Shipment() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
public void setId(int id) { this.id = id; }
...
// other setters and getters go here

}

Relation – 1:1 unidir – client
...
@Stateless
public class OrderShipmentUniBean implements OrderShipment {

@PersistenceContext
EntityManager em;
public void doSomeStuff() {

Shipment s = new Shipment();
s.setCity(“Austin”);
s.setZipcode(“78727”);
Order o = new Order();
o.setOrderName(“Software Order”);
o.setShipment(s);
em.persist(o);

}
public List getOrders() {

Query q = em.createQuery(“SELECT o FROM OrderUni o”);
return q.getResultList();

}
}

Relation – 1:1 bidir – “to”
...
@Entity(name=”ShipmentUni”)
public class Shipment implements Serializable {

private int id;
private String city;
private String zipcode;
private Order order;
public Shipment() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
public void setId(int id) { this.id = id; }
...
// other setters and getters go here
...
@OneToOne(mappedBy=”shipment”)
// shipmentproperty from the Order entity
public Order getOrder() {

return order;
}
public void setOrder(Order order) {

this.order = order;
}

}

Relation – 1:1 bidir – client...
@Stateless
public class OrderShipmentUniBean implements OrderShipment {

@PersistenceContext
EntityManager em;
public void doSomeStuff() {

Shipment s = new Shipment();
s.setCity(“Austin”);
s.setZipcode(“78727”);
Order o = new Order();
o.setOrderName(“Software Order”);
o.setShipment(s);
em.persist(o);

}
public List getOrders() {

Query q = em.createQuery(“SELECT o FROM OrderUni o”);
return q.getResultList();

}
..
public List getShipments() {

Query q = em.createQuery(“SELECT s FROM Shipment s”);
return q.getResultList();

}
}

Relation – 1:N unidir – “from”
...
@Entity(name=”CompanyOMUni”)
public class Company implements Serializable {

private int id;
private String name;
private Collection<Employee> employees;
...
// other getters and setters go here
// including the Id
...
@OneToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER)

public Collection<Employee> getEmployees() {
return employees;

}
public void setEmployees(Collection<Employee> employees) {

this.employees = employees;
}

}

Relation – 1:N unidir – “to”
...
@Entity(name=”EmployeeOMUni”)
public class Employee implements Serializable {

private int id;
private String name;
private char sex;
...
// other getters and setters go here
// including the Id
...

}

Relation – 1:N unidir – client

Company c = new Company();
c.setName(“M*Power Internet Services, Inc.”);Collection<Employee>

employees = new ArrayList<Employee>();
Employee e = new Employee();
e.setName(“Micah Silverman”); e.setSex(‘M’); employees.add(e);
e = new Employee();
e.setName(“Tes Silverman”); e.setSex(‘F’); employees.add(e);
c.setEmployees(employees);
em.persist(c);
c = new Company();
c.setName(“Sun Microsystems”);
employees = new ArrayList<Employee>();
e = new Employee();
e.setName(“Rima Patel”); e.setSex(‘F’); employees.add(e);
e = new Employee();
e.setName(“James Gosling”); e.setSex(‘M’); employees.add(e);
c.setEmployees(employees);
em.persist(c);

Relation – 1:N bidir – “from”
...
@Entity(name=”CompanyOMUni”)
public class Company implements Serializable {

private int id;
private String name;
private Collection<Employee> employees;
...
// other getters and setters go here
// including the Id
...
@OneToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER,
mappedBy=”company”)

public Collection<Employee> getEmployees() {
return employees;

}
public void setEmployees(Collection<Employee> employees) {

this.employees = employees;
}

}

Relation – 1:N bidir – “to”
...
@Entity(name=”EmployeeOMUni”)
public class Employee implements Serializable {

private int id;
private String name;
private char sex;
private Company company;
...
// other getters and setters go here
// including the Id
@ManyToOne
public Company getCompany() {

return company;
}
public void setCompany(Company company) {

this.company = company;
}

}

Relation – M:N
The rules for generating a join table are:

1. The name of the join table will be the name of the owning entity,
followed by an underscore (_), followed by the name of the target
entity.

2. The name of the first column in the join table will be the property name,
followed by an underscore, followed by the primary key name in the
owner entity.

3. The name of the second column in the join table will be the property
name, followed by an underscore, followed by the primary key name in
the target entity.

4. The types of the columns in the join table will match the primary key
types of the tables that will be referenced by it.

Relation – M:N unidir – “from”
...
@Entity(name=”StudentUni”)
public class Student implements Serializable {

private int id;
private String name;
private Collection<Course> courses = new ArrayList<Course>();
public Student() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
...
//other setters and getters go here
...
@ManyToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER)
@JoinTable(name=”STUDENTUNI_COURSEUNI”)
public Collection<Course> getCourses() {

return courses;
}
public void setCourses(Collection<Course> courses) {

this.courses = courses;
}

}

Relation – M:N unidir – “to”
...
@Entity(name=”CourseUni”)
public class Course implements Serializable {
private int id;
private String courseName;
private Collection<Student> students = new ArrayList<Student>();
...
//setters and getters go here
...
}

Relation – M:N bidir – “from”
...
@Entity(name=”StudentUni”)
public class Student implements Serializable {

private int id;
private String name;
private Collection<Course> courses = new ArrayList<Course>();
public Student() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
...
//other setters and getters go here
...
@ManyToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER)
@JoinTable(name=”STUDENTUNI_COURSEUNI”)
public Collection<Course> getCourses() {

return courses;
}
public void setCourses(Collection<Course> courses) {

this.courses = courses;
}

}

Relation – M:N bidir – “to”
...
@Entity(name=”CourseBid”)
public class Course implements Serializable {
private int id;
private String courseName;
private Collection<Student> students = new ArrayList<Student>();

...
//getters and setters go here
...
@ManyToMany(cascade={CascadeType.ALL},
fetch=FetchType.EAGER,mappedBy=”courses”)

public Collection<Student> getStudents() {
return students;

}
public void setStudents(Collection<Student> students) {

this.students = students;
}

}

Declarative Transactions

Transactions in EJB

Who begins a transaction?

Who begins a transaction? Who issues either a commit or abort?
This is called demarcating transactional boundaries .

There are three ways to demarcate transactions:
•programmatically:

you are responsible for issuing a begin statement and either a
commit or an abort statement.

•declaratively,
the EJB container intercepts the request and starts up a
transaction automatically on behalf of your bean.

•client-initiated.
write code to start and end the transaction from the client code
outside of your bean.

Programmatic vs. declarative
programmatic transactions:
your bean has full control over transactional boundaries.For
instance,you can use programmatic transactions to run a
series of minitransactions within a bean method.
When using programmatic transactions,always try to complete your
transactions in the same method that you began them.Doing
otherwise results in spaghetti code where it is difficult to track the
transactions;the performance decreases because the transaction is
held open longer.
declarative transactions:
your entire bean method must either run under a transaction
or not run under a transaction.
Transactions are simpler! (just declare them in the descriptor)

Client-initiated
Client initiated transactions:
A non-transactional remote client calls an enterprise bean that
performs its own transactions The bean succeeds in the
transaction,but the network or application server crashes
before the result is returned to a remote client.The remote
client would receive a Java RMI RemoteException indicating a
network error,but would not know whether the transaction
that took place in the enterprise bean was a success or a
failure.

With client-controlled transactions, if anything goes
wrong,the client will know about it.
The downside to client-controlled transactions is that if the
client is located far from the server, transactions are likely to
take a longer time and the efficiency will suffer.

Transactional Models
A flat transaction is the simplest transactional model to
understand.A flat transaction is a series of operations that are
performed atomically as a single unit of work .

A nested transaction allows you to embed atomic units of work
within other units of work.The unit of work that is nested
within another unit of work can roll back without forcing the
entire transaction to roll back. (subtransactions can
independently roll back without affecting higher transactions
in the tree)
(Not currently mandated by the EJB specification)

Other models: chained transactions and sagas.
(Not supported by the EJB specification)

EJB Transaction Attribute Values

Required
You want your method to always run in a transaction.
If a transaction is already running,your bean joins in on that
transaction. If no transaction is running,the EJB container
starts one for you.

Never
Your bean cannot be involved in a transaction.
If the client calls your bean in a transaction,the container
throws an exception back to the client
(java.rmi.RemoteException if
remote, javax.ejb.EJBException if local).

EJB Transaction Attribute Values

Supports
The method runs only in a transaction if the client had one
running already —it joins that transaction.
If the client does not have a transaction,the bean runs with no
transaction at all.

Mandatory
a transaction must be already running when your bean
method is called. If a transaction isn ’t running,
javax.ejb.TransactionRequiredException is thrown back to the
caller (or javax.ejb.TransactionRequiredLocalException if the
client is local).

EJB Transaction Attribute Values

NotSupported
your bean cannot be involved in a transaction at all.
For example,assume we have two enterprise beans,A and
B.Let ’s assume bean A begins a transaction and then calls
bean B. If bean B is using the NotSupported attribute,the
transaction that A started is suspended. None of B’s
operations are transactional,such as reads/writes to
databases. When B completes,A ’s transaction is resumed.

EJB Transaction Attribute Values

RequiresNew

You should use the RequiresNew attribute if you always want a
new transaction to begin when your bean is called. If a
transaction is already underway when your bean is called,that
transaction is suspended during the bean invocation.

The container then launches a new transaction and delegates
the call to the bean.The bean performs its operations and
eventually completes.The container then commits or aborts
the transaction and finally resumes the old transaction. If no
transaction is running when your bean is called,there is
nothing to suspend or resume.

EJB Transaction Attribute Values

TYPE PRECONDITION POSTCONDITION

Required NO transaction NEW
PRE-EXISTING PRE-EXISTING

RequiresNew NO transaction NEW
PRE-ESISTENTE NEW

Supports NO transaction NO transaction
PRE-EXISTING PRE-EXISTING

Mandatory NO transaction error
PRE-EXISTING PRE-EXISTING

NotSupported Nessuna transazione NO transaction
PRE-ESISTENTE NO transaction

Never NO transaction NO transaction
PRE-EXISTING error

Annotations
• @Stateless
• @TransactionManagement(javax.ejb.TransactonManagemen

tType.CONTAINER)
• public class Mybean implements Myinterface{
• @PersistencyContext private EntityManager em;
• @Resource private SessionContext ctx;
• …
• @TransactionAttribute(javax.ejb.TransactonManagementTyp

e.REQUIRED)
• public void myTransactedMethod(){…
• if (…) ctx.setRollbackOnly;
• }
• }

EJB Transaction Attribute Values

<assembly-descriptor>
<container-transaction>

<method>
<ejb-name>Employee</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Mandatory</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>Employee</ejb-name>
<method-name>setName</method-name>
<method-param>String</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

Dooming container-managed transactions

call setRollbackOnly() on your EJB context object.
If the transaction participant is not an Container Managed EJB component, you can
doom a transaction by looking up the JTA and calling the JTA ’s setRollbackOnly()
method,

Container-managed transactional beans can detect doomed transactions by calling
the getRollbackOnly()method on the EJB context object. If this method returns
true ,the transaction is doomed.

Isolation levels in EJB

BMT:
you specify isolation levels with your resource manager API (such as JDBC).
For example,you could call java.sql.Connection.SetTransactionIsolation(...).

CMT:
there is no way to specify isolation levels in the deployment descriptor.
You need to either use resource manager APIs (such as JDBC),or rely on your
container ’s tools or database ’s tools to specify isolation.

Isolation portability problems

Unfortunately, there is no way to specify isolation for container-
managed transactional beans in a portable way—you are reliant
on container and database tools.

This means if you have written an application, you cannot ship that application
with built-in isolation. The deployer now needs to know about transaction
isolation when he uses the container’s tools, and the deployer might not know a
whole lot about your application’s transactional behavior.

HQL

Persistency

Generalization of SQL

see:

https://docs.jboss.org/hibernate/core/3.3/reference/en/html/queryhql.html

https://www.tutorialspoint.com/hibernate/hibernate_query_language.htm

https://docs.jboss.org/hibernate/core/3.3/reference/en/html/queryhql.html
https://www.tutorialspoint.com/hibernate/hibernate_query_language.htm

