JavaScript EventSource
and
Java AsyncContext

A true push service on the web

Our goal:
* Build a publisher of events on a web server

 Build a client for events on the browser
* Allow for multiple simultaneous clients

In the following, only the most relevant parts of code are shown

Relevant, not well known classes used
JavaScript: in the COde

EventSource

java:

The following ones should be well known, but we'll provide a short reminder
Runnable, Thread

Some Java classes usefuf when dealing with concurrency

LinkedBlockingQueue
ConcurrentHashMap
CopyOnWriteArrayList
AtomicLong

UUID

UUID: class that represents an immutable universally unique identifier (UUID).
A UUID represents a 128-bit value.

AtomicLong part of the Package java.util.concurrent.atomic
A small toolkit of classes that support lock-free thread-safe programming on single variables.

JavaScript EventSource

Interface to server-sent events.

Opens a persistent connection to an HTTP server, which

sends events in text/event-stream format.

The connection remains open until closed by calling EventSource.close().

incoming messages from the server are delivered in the form of events.

Unlike WebSockets, server-sent events are unidirectional: you can not use an
EventSource channel to send message from browser to server.

When not used over HTTP/2, SSE suffers from a limitation to the maximum
number of open connections: the limit is per browser and set to a 6.

When using HTTP/2, the maximum number of simultaneous HTTP streams is
negotiated between the server and the client (defaults to 100).

see https://developer.mozilla.org/en-US/docs/Web/APIl/EventSource

https://developer.mozilla.org/en-US/docs/Web/API/EventSource

JavaScript EventSource

Method onmessage: callback function activated on incoming messages

var evtSource = new EventSource('/mysource');

evtSource.onmessage = function(e) { This will listen only for
document.getElementByld('sse').innerHTML = e.data; events of type
} event: notice
eventisteners: data: somedata
. id: someid
sse = new EventSource('/api/v1l/sse');

sse.addEventListener("notice", function(e) { console.log(e.data) })
sse.addEventListener("update", function(e) { console.log(e.data) })

This will listen for

sse.addEventListener("message", function(e) { console.log(e.data) k

events of type

The event "message" will capture:
& P event: update

* events without an event field
* events of type event: message’

see https://html.spec.whatwg.org/multipage/server-sent-events.html#fserver-sent-events

https://html.spec.whatwg.org/multipage/server-sent-events.html

Java Runnable and Thread

java.lang.Runnable is an interface that is to be implemented by a class whose
instances are intended to be executed by a thread.

method run(): body of the Runnable, is never called explicitly, but is activated
when the method start is called on a Thread that encapsulates the Runnable.

java.lang.Thread: java implementation of the thread concept. A thread a line of
execution within a program. A Thread must either be instantiated by
encapsulating a Runnable, or subclassed redefining the run method.

see
https://www.geeksforgeeks.org/runnable-interface-in-java/
https://www.geeksforgeeks.org/java-lang-thread-class-java/

image from https://www.geeksforgeeks.org

https://www.geeksforgeeks.org/runnable-interface-in-java/
https://www.geeksforgeeks.org/java-lang-thread-class-java/

Java LinkedBlockingQueue

in packege java.util.concurrent : Utility classes commonly useful in concurrent

programming.

Method take() : Retrieves and removes the head of this queue, waiting if
necessary until an element becomes available.

interface Collection
4
class extends T s implements
Queue AbstractCollection
A
extends I E implements Iextends
Serializable BlockingQueue AbstractQueue
4 4
! implements .
foTtTomemees ﬁ. ------- ’ extends
LinkedBlockingQueue

image from https://www.geeksforgeeks.org

Java ConcurrentHashMap

in packege java.util.concurrent : Utility classes commonly useful in concurrent
programming.

A hash table supporting full concurrency of retrievals and high expected
concurrency for updates.

Map Interface
Textends
Class
ConcurrentMap
Textends
ConcurrentNavigableMap Serializable
A N
implements R
¢ implements

ConcurrentHashMap

image from https://www.geeksforgeeks.org

Java CopyOnWriteArrayList

in package java.util.concurrent : Utility classes commonly useful in concurrent
programming.

It is a thread-safe version of ArrayList. All modifications (add, set, remove, etc) are
implemented by making a fresh copy, hence it is costly and is best used if our
frequent operation is read operation.

<<interface>>
Collection
extends

<<interface>>
list

implements

<<Class>>
CopyOnWriteArraylList

image from https://www.geeksforgeeks.org

The data structure

Servlet Context ("application" in JSP)

New message Old message Client
queue list list

* Created at WebApp start

Newsltem:
represents a message
* contains:
* aserial number
* aline of text
 knows how:
* toString(): print itself into a String
* toJSON() : print itself into a JSON structure

The agents: Distributor

New message
queue

Servlet Context ("application" in JSP)

Old message Client
list list

e An autonomous thread
e Mission: distribute events to all clients

* get nextitem from queue
* loop over client list

* send item to client
* move item to old message list

Repeat forever

. . private void sendMessage (
* th I PrintWriter writer, NewsItem item) {
Distributor: the loop Weiter writer, NewsItes
writer.println(item.toJSON()) ;

writer.println() ;
try { writer.flush(); }

while (running) {

// Waits until a news item arrives
NewsItem news item = newItemsQueue.take()
// Store into past items, for future clients
pastItemsList.add (news_ item);
// Sends the item to all the clients
Iterator<AsyncContext> iter=clientlist.values () .iterator()
while (iter.hasNext()) {
AsyncContext client=iter.next() ;
try {
PrintWriter channel = client.getResponse () .getWriter() ;
sendMessage (channel, news item);
} catch (Exception e) {
// In case of problems remove context from map
iter.remove() ;

}
} catch (InterruptedException e) {/* Log exception, etc. */}

The views: NewsCreator jsp

e Reads the use input
e sends it to its controller (NewsFeeder servlet)

@ localhost:8084/SSE_demo/newsCreator.jsp

Java Server Sent Events - NEWS WRITER

Enter message here

Enter message in the field above and press Enter to send it.

The agents: NewsFeeder servlet

Servlet Context ("application" in JSP)

New message Old message Client
queue list list
Mission:

e setup the web app
e start the distributor
 add messages to the New message queue

* At the beginning (init)
* creates data structure in context
* starts the Distributor

 When called (from NewsCreator.jsp):
 adds message to New message queue

iINewsFeederServlet: the init()

public void init(ServletConfig config) throws ServletException ({
super.init (configqg) ;
ctx=getServletContext() ;
startEvent () ;

}

private void startEvent () {

// create all needed items, add them to context, start the
distributor

counter.set (0) ;

clientList=new ConcurrentHashMap<String, AsyncContext>() ;
ctx.setAttribute("clients", clientList);
pastItemsList=new CopyOnWriteArrayList<NewsItem> () ;
ctx.setAttribute ("newsList", pastItemsList);
distributor=new Distributor (ctx) ;

ctx.setAttribute ("distributor", distributor);
distributor.start () ;

NewsFeederServlet: save new item

String newsLine = request.getParameter ('"line");
if ((newsLine !'= null) && !'newsLine.trim() .isEmpty()) ({
if (newsLine.compareTo ("$END%")==0) {
endEvent () ;
request.getRequestDispatcher (" /newsCreator. jsp")
.forward (request, response);

return;

}
try {
NewsItem news_item = new NewsItem (
counter.incrementAndGet () ,newsLine.trim()) ;
newItemsQueue.put (news item);

} catch (InterruptedException e) { /*manage exception*/}

The views: index jsp

Servlet Context ("application" in JSP)

New message Old message Client
queue list list
Checks if data structure is in place. If not, ® localhost:8084/SSE_demo/
tells the user that no event stream is there
and ends. Sorry, no available events. Try later.

Prints all old messages
Starts waiting for new messages:
e opens an EventSource to the

(@ localhost:8084/SSE_demo/

NewsChannelOpener serviet .
* registers a callback for incoming NeWSfeed'
events
1:aaa

* the callback gets a JSON formatted

. . 2 : bbb
message and prints it

3:ccc

index.jsp — the JS

<script>
function test() {
var source = new EventSource (
'/SSE_demo/NewsChannelOpenerServlet') ;
source.onopen = function (event) {
console.log("eventsource opened!") ;
};
source.onmessage = function(event) {
var data = event.data;
var obj = JSON.parse (data);
console.log(data) ;
document.getElementById('sse') .innerHTML +=
obj.id+" : "+obj.text + "
";
};
}
window.addEventListener ("load", test);
</script>

The agents: NewsChannelOpener servlet

Servlet Context ("application" in JSP)

New message Old message Client
queue list list
Mission:

* When new client comes
e additto the list
e setup the response channel

 When called (from index.jsp):
* initialize the response with the suitable headers
* create an AsyncContext for the client, and pass to it request and response
e add it to the Client list

NewsChannelOpenerServlet

protected void doGet (HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {

if (request.getHeader ("Accept") .equals("text/event-stream")) {
// setup resonse headers
response.setContentType ("text/event-stream") ;
response.setHeader ("Cache-Control", '"no-cache");
response.setHeader ("Connection", "keep-alive'");
response.setCharacterEncoding ("UTF-8") ;
// This a Tomcat specific - makes request asynchronous
request.setAttribute ("org.apache.catalina.ASYNC SUPPORTED",

true) ;
clientlList = (Map<String, AsyncContext>)
ctx.getAttribute("clients") ;
addReader (request, response) ;
} else {
response.getWriter () .println("Sorry, event stream not
supported") ;

NewsChannelOpenerServlet

protected void doGet (HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {

if (request.getHeader ("Accept") .equals("text/event-stream")) {
// setup resonse headers
response.setContentType ("text/event-stream") ;
response.setHeader ("Cache-Control", '"no-cache");
response.setHeader ("Connection", "keep-alive'");
response.setCharacterEncoding ("UTF-8") ;
// This a Tomcat specific - makes request asynchronous
request.setAttribute ("org.apache.catalina.ASYNC SUPPORTED",

true) ;
clientlList = (Map<String, AsyncContext>)
ctx.getAttribute("clients") ;
addReader (request, response) ;
} else {
response.getWriter () .println("Sorry, event stream not
supported") ;

Summary

1) On the client side, we need to open an EventSource to
read data, and to associate to it callbacks to manage data
and events received.

2) On the server side, we need to create an AsyncContext
for every client. When we want to send a message or an
event to clients, we do that through its AsyncContext.

Notifications API

Allows web pages to control the display of system notifications
to the end user.

These are outside the top-level browsing context viewport, so
therefore can be displayed even when the user has switched
tabs or moved to a different app.

The APl is designed to be compatible with existing notification
systems, across different platforms.

https://developer.mozilla.org/en-
US/docs/Web/APl/Notifications APl/Using the Notifications API

https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API/Using_the_Notifications_API

Push API

Gives web applications the ability to receive messages pushed
to them from a server, whether or not the web app is in the
foreground, or even currently loaded, on a user agent.

This lets developers deliver asynchronous notifications and
updates to users that opt in, resulting in better engagement
with timely new content.

This is an experimental technology, in Firefox merged with
Notifications

https://developer.mozilla.org/en-US/docs/Web/API/Push API

https://developer.mozilla.org/en-US/docs/Web/API/Push_API

