
Web and HTTP

Richiami e estensioni dal corso di Reti, prof. Michele Segata,
Parzialmente tratto da Computer Networking: A Top-Down
Approach, Kurose-Ross

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento1

HTTP: basics and
connections

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento2

HTTP overview

HTTP: hypertext transfer
protocol
§ Web’s application layer

protocol
§ client/server model

§ client: browser that requests,
receives, (using HTTP
protocol) and “displays” Web
objects

§ server: Web server sends
(using HTTP protocol) objects
in response to requests

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento3

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

HTTP and TCP/IP

HTTP sits atop the TCP/IP Protocol Stack

Network Interfaces

HTTP

TCP

IP

Application Layer

Transport Layer

Network Layer

Data Link Layer

HTTP overview (continued)

uses TCP:
§ client initiates TCP connection (creates socket) to server, port

80
§ server accepts TCP connection from client
§ HTTP messages (application-layer protocol messages)

exchanged between browser (HTTP client) and Web server
(HTTP server)

§ TCP connection closed

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento5

HTTP overview (continued)

HTTP is “stateless”
§ server maintains no information about past client requests

protocols that maintain “state” are complex:
§ past history (state) must be maintained
§ if server/client crashes, their views of “state” may be inconsistent,

must be reconciled

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento6

HTTP overview (continued)

For comparison: FTP is “stateful”
§ server maintains information about past client requests

e.g.:
§ you can issue a “cd” command to move into a (remote) directory
§ The next commands (e.g. “ls”) will be executed with reference to

that directory

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento7

Q
Where is HTTP defined ?

8

HTTP

§ Three versions have been used, two are in common use and have
been specified:

§ The Original HTTP as defined in 1991 as HTTP 0.9
§ RFC 1945 HTTP 1.0 (1996)
§ RFC 2616 HTTP 1.1 (1999)

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento9

HTTP 1.1

In June 2014, RFC 2616 was retired and HTTP/1.1 was redefined by

§ RFC 7230 - HTTP/1.1: Message Syntax and Routing
§ RFC 7231 - HTTP/1.1: Semantics and Content
§ RFC 7232 - HTTP/1.1: Conditional Requests
§ RFC 7233 - HTTP/1.1: Range Requests
§ RFC 7234 - HTTP/1.1: Caching
§ RFC 7235 - HTTP/1.1: Authentication

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento10

We will stick to HTTP 1.1

HTTP/2

HTTP/2 (originally named HTTP/2.0) is a major revision of the HTTP
network protocol used by the World Wide Web. It was derived from
the earlier experimental SPDY protocol, originally developed by
Google.
The changes do not require any modification to how existing web
applications work, but new applications can take advantage of new
features for increased speed.
HTTP/2 leaves most of HTTP 1.1's high-level syntax, such as
methods, status codes, header fields, and URIs, the same.
What is new is how the data is framed and transported between
the client and the server.

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento11

HTTP/3

HTTP/3 H3 is the upcoming third major version
HTTP/3 is a draft based on a previous RFC draft, then named
"Hypertext Transfer Protocol (HTTP) over QUIC".
QUIC is a transport layer network protocol developed initially by

Google where user space congestion control is used over the User
Datagram Protocol (UDP).

https://tools.ietf.org/html/draft-ietf-quic-http-23

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento12

https://tools.ietf.org/html/draft-ietf-quic-http-23

Q
How does HTTP work ?

13

§ Open a TCP connection to a host
§ Can borrow telnet protocol to do this, by pointing it at

the default HTTP port (80)
§ C:\>telnet www.google.com 80

§ Ask for a resource using a minimal request syntax:
§ GET / HTTP/1.1 <CRLF>
§ Host: www.google.ps <CRLF>
§ <CRLF>

§ A Host header is required for HTTP 1.1 connections,
though not for HTTP 1.0

Making a simple HTTP request using Telnet

Making a simple HTTP request using Telnet

Web and HTTP

§ web page consists of objects
§ object can be text file, JPEG image, Flash objects, audio file,…
§ a web page contains of base HTML-file which includes several

referenced objects
§ each object is addressable by a URL:

§ www.somecompany.com/someDept/pic.gif
§ www. somecompany. com is the host name
§ someDept/pic.gif is the path to the object

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento16

Web in 1996

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento17

Web Today

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento18

Our applications are complex, and
growing...

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento19

ContentType
Desktop Mobile

Avg #of
requests

Avgsize Avg #of
requests

Avgsize

HTML 10 56KB 6 40KB

Images 56 856KB 38 498KB

Javascript 15 221KB 10 146KB

CSS 5 36KB 3 27KB

Total 86+ 1169+KB 57+ 711+KB

HTTP requires a TCP connection

Non-persistent HTTP: response time

RTT (round trip time): time for a
small packet to travel from
client to server and back
HTTP response time:
§ one RTT to initiate TCP

connection
§ one RTT for HTTP request and

first few bytes of HTTP
response to return

§ file transmission time
§ non-persistent HTTP response

time =
§ 2RTT+ file transmission time

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento21

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Persistent Connection

Pipelining

HTTP connections

non-persistent HTTP
§ at most one object sent over

TCP connection
§ connection then closed
§ downloading multiple objects

required multiple connections

persistent HTTP
§ multiple objects can be sent

over single TCP connection
between client and server

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento24

HTTP connections

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento25

Q
How does the HTTP request
composed ?

26

Making a simple HTTP request using Telnet

HTTP Requests

HTTP request message: general
format

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento29

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

§ HTTP requests and responses are both types of Internet Messages
(RFC 822), and share a general format:
§ A Start Line, followed by a CRLF

§ Request Line for requests
§ Status Line for responses

§ Zero or more Message Headers
§ field-name “:” [field-value] CRLF

§ An empty line
§ Two CRLFs mark the end of the Headers

§ An optional Message Body if there is a payload
§ All or part of the “Entity Body” or “Entity”

HTTP requests and responses Messages

HTTP request message

§ two types of HTTP messages: request, response
§ HTTP request message:

§ ASCII (human-readable format)

31

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

request line
(GET, POST,
HEAD commands)

header
lines

carriage return,
line feed at start
of line indicates
end of header lines

Method types

HTTP/1.0:
§ GET, POST

§ asks server to obtain an object
§ HEAD

§ asks server to leave requested object out of response

HTTP/1.1:
§ GET, POST, HEAD
§ PUT

§ uploads file in entity body to path specified in URL field
§ DELETE

§ deletes file specified in the URL field

32

Uploading form input

POST method:
§ web page often includes form input
§ input is uploaded to server in entity body

URL method:
§ uses GET method
§ input is uploaded in URL field of request line:

§ www.somesite.com/animalsearch?monkeys&banana

33

§ GET

§ By far most common method

§ Retrieves a resource from the server

§ Supports passing of query string arguments

§ HEAD

§ Retrieves only the Headers associated with a resource but not the entity itself

§ Highly useful for protocol analysis, diagnostics

§ POST

§ Allows passing of data in entity rather than URL

§ Can transmit of far larger arguments that GET

§ Arguments not displayed on the URL

A Closer Look at the Request Methods

§ OPTIONS

§ Shows methods available for use on the resource (if given a path) or the host (if given a

“*”)

§ TRACE

§ Diagnostic method for assessing the impact of proxies along the request-response chain

§ CONNECT

§ A common extension method for Tunneling other protocols through HTTP

§ PUT, DELETE

§ Used in HTTP publishing (e.g., WebDav)

More Request Methods, cont.

Web-based Distributed Authoring and Versioning (WebDAV, RFC 4918) is
a set of methods based on the Hypertext Transfer Protocol (HTTP) that
facilitates collaboration between users in editing and managing
documents and files stored on World Wide Web servers.

idempotent methods

https://developer.mozilla.org/en-US/docs/Glossary/idempotent

An HTTP method is idempotent if an identical request can be made
once or several times in a row with the same effect while leaving
the server in the same state.

An idempotent method should not have any side-effects (except for
keeping statistics).

Implemented correctly, the GET, HEAD, PUT, and DELETE method
are idempotent, but not the POST method.

36

https://developer.mozilla.org/en-US/docs/Glossary/idempotent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/HEAD
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PUT
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/DELETE
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

safe methods

https://developer.mozilla.org/en-US/docs/Glossary/safe

An HTTP method is safe if it doesn't alter the state of the server.
A method is safe if it leads to a read-only operation.
Several common HTTP methods are safe: GET, HEAD, or OPTIONS.
All safe methods are also idempotent, but not all idempotent
methods are safe.
For example, PUT and DELETE are both idempotent but unsafe.

37

https://developer.mozilla.org/en-US/docs/Glossary/safe
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/HEAD
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/OPTIONS
https://developer.mozilla.org/en-US/docs/Glossary/idempotent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PUT
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/DELETE

Safe, unsafe and idempotent
methods
§ GET /pageX HTTP/1.1 is idempotent. Called several times in a row, the client

gets the same results:
§ GET /pageX HTTP/1.1
§ GET /pageX HTTP/1.1
§ GET /pageX HTTP/1.1

§ POST /add_row HTTP/1.1 is not idempotent; if it is called several times, it adds
several rows:
§ POST /add_row HTTP/1.1
§ POST /add_row HTTP/1.1 -> Adds a 2nd row
§ POST /add_row HTTP/1.1 -> Adds a 3rd row

§ DELETE /idX/delete HTTP/1.1 is idempotent, even if the returned status code
may change between requests:
§ DELETE /idX/delete HTTP/1.1 -> Returns 200 if idX exists
§ DELETE /idX/delete HTTP/1.1 -> Returns 404 as it just got deleted
§ DELETE /idX/delete HTTP/1.1 -> Returns 404

38

A Closer Look at HTTP Headers

Headers come in four major types, some for requests, some for
responses, some for both:

– General Headers
• Provide info about messages of both kinds

– Request Headers
• Provide request-specific info

– Response Headers
• Provide response-specific info

– Entity Headers
• Provide info about request and response entities

– Extension headers are also possible

§ Connection – lets clients and servers manage connection state
§ Connection: Keep-Alive

§ Connection: close

§ Date – when the message was created
§ Date: Sat, 31-May-03 15:00:00 GMT

§ Via – shows proxies that handled message
§ Via: 1.1 www.myproxy.com (Squid/1.4)

§ Cache-Control – Among the most complex of headers, enables caching

directives
§ Cache-Control: no-cache

General Headers

§ Host – The hostname (and optionally port) of server to which
request is being sent

§ Referer – The URL of the resource from which the current request
URI came

§ Referer: http://www.host.com/login.asp
§ User-Agent – Name of the requesting application, used in browser

sensing
§ User-Agent: Mozilla/4.0 (Compatible; MSIE 6.0)

§ Accept and its variants – Inform servers of client’s capabilities and
preferences

§ Enables content negotiation
§ Accept: image/gif, image/jpeg;q=0.5
§ Accept- variants for Language, Encoding, Charset

§ Cookie How clients pass cookies back to the servers that set them
§ Cookie: id=23432;level=3

Request Headers

How to view HTTP headers in Google Chrome?

§ In Chrome, visit a URL, right
click, select Inspect to open
the developer tools.

§ Select Network tab.
§ Reload the page, select any

HTTP request on the left
panel, and the HTTP
headers will be displayed
on the right panel.

https://mkyong.com/computer-tips/how-to-view-http-headers-in-google-chrome/

https://mkyong.com/computer-tips/how-to-view-http-headers-in-google-chrome/

HTTP: response

43

HTTP response messages

44

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
data data data data data ...

status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

§ Consists of three major parts:

§ The HTTP Version
§ Just like third part of Request Line

§ Status Code
§ 5 groups of 3 digit integers indicating the result of the attempt to satisfy the

requestThe Reason Phrase followed by the CRLF

§ Short textual description of the status code

A Closer Look at the Status Line

HTTP response status codes examples

§ status code appears in 1st line in server-to-client response
message.

§ some sample codes:
§ 200 OK

§ request succeeded, requested object later in this msg
§ 301 Moved Permanently

§ requested object moved, new location specified later in this msg
(Location:)

§ 400 Bad Request
§ request msg not understood by server

§ 404 Not Found
§ requested document not found on this server

§ 505 HTTP Version Not Supported

46

§ Server – The server’s name and version
§ Server: Microsoft-IIS/5.0
§ Can be problematic for security reasons

§ Set-Cookie – This is how a server sets a cookie on a client
§ Set-Cookie: id=234; path=/shop; expires=Sat, 31-May-03

15:00:00 GMT; secure

Response Headers

§ Allow – Lists the request methods that can be used on the entity
§ Allow: GET, HEAD, POST

§ Location – Gives the alternate or new location of the entity
§ Used with 3xx response codes (redirects)

§ Location: http://www.iugaza.edu.ps/ar/

§ Content-Encoding – specifies encoding performed on the body of the

response
§ Used with HTTP compression

§ Corresponds to Accept-Encoding request header

§ Content-Encoding: gzip

§ Content-Length – The size of the entity body in bytes

§ Content-Location – The actual if different than its request URL

§ Content-Type – specifies Media (MIME) type of the entity body

Entity Headers

http://www.iugaza.edu.ps/ar/

HTTPS
=

HTTP + SSL

Slides from HTTP vs. HTTPS by Eng. T. Aldaldooh

§ (HTTPS) Hypertext Transfer Protocol over Secure Socket Layer (SSL).

§ First implementation of HTTP over SSL was issued in 1995 by

Netscape.

HTTPS

HTTPS only slightly slower than HTTP.

HTTPS is a bit more complex to set up
(due to the need of a certificate)

Cryptography for dummies

Important information Data, Data, Data.

Encryption

Encryption Algorithm
= cipher

Hh2sh!~hH==E#@ns8676%===sdf

Plain Text

Cipher Text

Some random String

Hyper-basic example

Msg: “Good Morning”
Encription algorithm: shift letters forward by n
Key: n

Encoded msg, with key=1: “Hppe Npsojoh”

Encoded msg, with key=2: “Iqqf Oqtpkpi”

Decription algorithm: shift letters backward by n

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento52

Cryptography cont.

Decryption
Algorithm

Important information Data, Data, Data.

Hh2sh!~hH==E#@ns8676%===sdf

Some random String

Symmetric Key

Asymmetric (public-key) encryption
Im

p
or

ta
n

t
in

fo
rm

at
io

n
 D

at
a,

 D
at

a,
 D

at
a.

H
h2
sh
!~
hH
=
=
E#
@
ns
86
76
%
=
=
=
sd
f

Im
p

or
ta

n
t

in
fo

rm
at

io
n

 D
at

a,
 D

at
a,

 D
at

a.

DecryptEncrypt

Public
Key

Private
Key

Asymmetric key decryption is slower than symmetric key decryption

§ Uses asymmetric encryption to privately share the
session key
§ Asymmetric has a lot of overhead

§ Uses symmetric encryption to encrypt data
§ Symmetric encryption is quicker and uses less

resource

SSL Session

SSL Handshake Process

Client requests HTTPS session

Certificate sent back (with public key)

Client creates session key
(53)

Session key
encrypted with public
key(X$qp0)

At this point only client
knows session key

Session encrypted with

symmetric session key (53)

session key
decrypted with
private key

At this point both
client and server
knows session key

Encrypted session key sent to server

Server

Port 443

TCP Connection

Client Hello

Highest SSL Version: 2.0
Cipher: SMAL-SHAL-DES

Compression: gzip
Random:”sdf31nbj2”

Server Hello

SSL Version: 2.0
Cipher: SHAL

Compression: gzip
SessionID: “dash342h”
Random:”sdf31nbj2”

Certificates

Public key: 324fdg3
Issued TO: google.com

Issued By: Thene SG
Valid From: 26\10\2011
Valid From: 1\10\2013

Certificate verifyChange Cipher SPEC

Finished
Digest:
ef432kjkjh4kjh234h23h42h4h
32i@32=23=424=324kjl32jlj2
3j23klj432jj23432422

Change Cipher SPEC

Finished
Digest:
ef432kjkjh4kjh234h23h42
h4h32i@32=23=424=324
kjl32jlj23j23klj432jj23432
422

Symmetric Session
Key:

Wehkj$@hjgd=wef=we$#D%
^fjh3dgqgdgq

§ Who guarantees that the certificate is authentic?
§ “Chain of trust”

§ More in the security courses

Other security issues

§ HTTPS only slightly slower than HTTP.

Conclusion

} HTTP Essentials Protocols for Secure, Scaleable Web Sites by
Stephen Thomas .

} HTTP The Definitive Guide.
} View HTTP Request and Response Header < http://web-

sniffer.net/ >

Traffic optimization 1:
HTTP: proxy

60

Web caches (proxy server)

Goal: satisfy client request
without involving origin server
§ user sets browser: Web

accesses via cache
§ browser sends all HTTP

requests to cache
§ object in cache: cache

returns object
§ else cache requests object

from origin server, then
returns object to client

61

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

More about Web caching

§ cache acts as both client and
server
§ server for original requesting

client
§ client to origin server

§ typically cache is installed by
ISP (university, company,
residential ISP)

why Web caching?
§ reduce response time for

client request
§ reduce traffic on an

institution’s access link
§ Internet dense with caches:

enables “poor” content
providers to effectively deliver
content (so too does P2P file
sharing)

62

Conditional GET

§ Goal: don’t send object if
cache has up-to-date cached
version
§ no object transmission delay
§ lower link utilization

§ cache: specify date of cached
copy in HTTP request
§ If-modified-since: <date>

§ server: response contains no
object if cached copy is up-to-
date:
§ HTTP/1.0 304 Not Modified

63

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Traffic optimization 2:
Video streaming and
CDNs
Content Distribution Networks

64

Video Streaming and CDNs: context

§ video traffic: major consumer of Internet bandwidth
§ Netflix, YouTube: 37%, 16% of downstream residential ISP traffic
§ ~1B YouTube users, ~75M Netflix users

§ challenge: scale - how to reach ~1B users?
§ single mega-video server won’t work (why?)

§ challenge: heterogeneity
§ different users have different capabilities (e.g., wired versus mobile;

bandwidth rich versus bandwidth poor)

§ solution: distributed, application-level infrastructure

65

Multimedia: video

§ video: sequence of images
displayed at constant rate
§ e.g., 24 images/sec

§ digital image: array of pixels
§ each pixel represented by

bits
§ coding: use redundancy within

and between images to
decrease # bits used to
encode image
§ spatial (within image)
§ temporal (from one image to

next)

66

……………………..

spatial coding example: instead of
sending N values of same color (all
purple), send only two values: color
value (purple) and number of
repeated values (N)

frame i

frame i+1

temporal coding example:
instead of sending complete
frame at i+1, send only
differences from frame i

……………….…….

Streaming stored video

§ Simple scenario:

67

video server
(stored video)

client

Internet

Streaming multimedia: DASH

DASH: Dynamic, Adaptive Streaming over HTTP
§ server:

§ divides video file into multiple chunks
§ each chunk stored, encoded at different rates
§ manifest file: provides URLs for different chunks

§ client:
§ periodically measures server-to-client bandwidth
§ consulting manifest, requests one chunk at a time

§ chooses maximum coding rate sustainable given current bandwidth
§ can choose different coding rates at different points in time

(depending on available bandwidth at time)

68

Streaming multimedia: DASH

DASH: Dynamic, Adaptive Streaming over HTTP
§ “intelligence” at client: client determines

§ when to request chunk (so that buffer starvation, or overflow does
not occur)

§ what encoding rate to request (higher quality when more
bandwidth available)

§ where to request chunk (can request from URL server that is “close”
to client or has high available bandwidth)

69

Content distribution networks

§ challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

§ option 1: single, large “mega-server”
§ single point of failure
§ point of network congestion
§ long path to distant clients
§ multiple copies of video sent over outgoing link

§ quite simply: this solution doesn’t scale

70

Content distribution networks

§ challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

§ option 2: store/serve multiple copies of videos at multiple
geographically distributed sites (CDN)
§ enter deep: push CDN servers deep into many access networks

§ close to users
§ used by Akamai, 1700 locations

§ bring home: smaller number (10’s) of larger clusters in POPs near
(but not within) access networks
§ used by Limelight

71

Content Distribution Networks
(CDNs)
§ CDN: stores copies of content at CDN nodes

§ e.g. Netflix stores copies of MadMen

§ subscriber requests content from CDN
• directed to nearby copy, retrieves content
• may choose different copy if network path congested

72

…

…

……

…

…

where’s Madmen?
manifest file

