Web and HTTP

Richiami e estensioni dal corso di Reti, prof. Michele Segata,

Parzialmente tratto da Computer Networking: A Top-Down
Approach, Kurose-Ross

Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

HTTP: basics and
connections

Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

HTTP overview

HTTP: hypertext transfer
protocol

= Web’s application layer PC running
protocol Firefox browser

= client/server model

= client: browser that requests,
receives, (using HTTP
protocol) and “displays” Web
objects

= server: Web server sends
(using HTTP protocol) objects
in response to requests

server
running
Apache Web

server

iPhone running
Safari browser

3 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

HTTP and TCP/IP

HTTP sits atop the TCP/IP Protocol Stack

Application Layer

Transport Layer

Network Layer

Data Link Layer Network Interfaces

HTTP overview (continued)

uses TCP:

" client initiates TCP connection (creates socket) to server, port
80

= server accepts TCP connection from client

* HTTP messages (application-layer protocol messages)
exchanged between browser (HTTP client) and Web server
(HTTP server)

= TCP connection closed

5 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento = (e

HTTP overview (continued)

HTTP is “stateless”

" server maintains no information about past client requests

protocols that maintain “state” are complex:
= past history (state) must be maintained

= if server/client crashes, their views of “state” may be inconsistent,
must be reconciled

6 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

HTTP overview (continued)

For comparison: FTP is “stateful”

" server maintains information about past client requests

e.g.:
M (o V4 . M
= you can issue a “cd” command to move into a (remote) directory

" The next commands (e.g. “Is”) will be executed with reference to
that directory

7 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

Q

Where is HTTP defined ?

HTTP

= Three versions have been used, two are in common use and have
been specified:

" The Original HTTP as defined in 1991 as HTTP 0.9
= RFC 1945 HTTP 1.0 (1996)
" RFC 2616 HTTP 1.1 (1999)

9 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento = &8

HTTP 1.1

In June 2014, RFC 2616 was retired and HTTP/1.1 was redefined by

= RFC 7230 - HTTP/1.1: Message Syntax and Routing
= RFC 7231 - HTTP/1.1: Semantics and Content

= RFC 7232 - HTTP/1.1: Conditional Requests

= RFC 7233 - HTTP/1.1: Range Requests

= RFC 7234 - HTTP/1.1: Caching

= RFC 7235 - HTTP/1.1: Authentication

We will stick to HTTP 1.1

10 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento = &8

HTTP/2

HTTP/2 (originally named HTTP/2.0) is a major revision of the HTTP
network protocol used by the World Wide Web. It was derived from
the earlier experimental SPDY protocol, originally developed by

Google.

The changes do not require any modification to how existing web
applications work, but new applications can take advantage of new
features for increased speed.

HTTP/2 leaves most of HTTP 1.1's high-level syntax, such as
methods, status codes, header fields, and URIs, the same.

What is new is how the data is framed and transported between
the client and the server.

11 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento = (e

HTTP/3

HTTP/3 H3 is the upcoming third major version

HTTP/3 is a draft based on a previous RFC draft, then named
"Hypertext Transfer Protocol (HTTP) over QUIC".

QUIC is a transport layer network protocol developed initially by
Google where user space congestion control is used over the User
Datagram Protocol (UDP).

https://tools.ietf.org/html/draft-ietf-quic-http-23

12 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento = &=

https://tools.ietf.org/html/draft-ietf-quic-http-23

13

Q

How does HTTP work ?

Making a simple HTTP request using Telnet

= Open a TCP connection to a host

= Can borrow telnet protocol to do this, by pointing it at
the default HTTP port (80)

= C:\>telnet www.google.com 80

= Ask for a resource using a minimal request syntax:
= GET / HTTP/1.1 <CRLF>
= Host: www.google.ps <CRLF>
= <CRLF>

= A Host header is required for HTTP 1.1 connections,
though not for HTTP 1.0

Making a simple HTTP request using Telnet

[MR-MBP-14955:~ ronchetsltelnet www.google.com 80 |

i

|
|
|
|
|
I
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Trying 216.58.206.36...
Connected to www.google.com.
Escape character is '"“]'.

ET / HTTP/1.1
Host: www.google.com

| HTTP/1.1 200 OK

Date: Sun, 09 Feb 2020 08:54:19 GMT
Expires: =1
Cache-Control: private, max-age=0

 Content-~Type: text/html; charset=IS0-8859-~1

P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."

' Server: gws

| X-XSS-Protection: 0

| X-Frame-Options: SAMEORIGIN

| Set-Cookie: 1P JAR=2020-02-09-08; expires=Tue, 10-Mar-2020 08:54:19 GMT; path=/;

domain=.google.com; Secure

 Set-Cookie: NID=197=BZn2l1JO1INIiKeLkhSA3YOTAgo5E0aCh8SjlileUG2a8d5Cw_1SQVcZ0j0hHS8

3nbl8ieVoFlVem51vbWiB4zHOEHXAOTS Bc4P20xmPPjuyFMwyvmPXTX24R2Cc09BiRbrbRKCirX7C2JrK

| £xbpXbInGWo002zWINXp2p0XZ0jWLP70; expires=Mon, 10-Aug-2020 08:54:19 GMT; path=/;

' domain=.google.com; HttpOnly
| Accept-Ranges: none

' Vary: Accept-Encoding

Web and HTTP

" web page consists of objects
" object can be text file, JPEG image, Flash objects, audio file,...

" 3 web page contains of base HTML-file which includes several
referenced objects

= each object is addressable by a URL:

= www.somecompany.com/someDept/pic.gif
= www. somecompany. com is the host name
= someDept/pic.gif is the path to the object

16 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

Web in 1996

€S s YaHOO!& o @

ol cucknere ool
Yahoo! Deutschland %53 %5 L0S ANGELES Weekly Picks

Scarch Options
Ycllow Pages - People Search - City Maps -- News Headlines - Stock Quotes - Sports Scores

e Computers and Internet [Xtra!l - - [nterner, WWW, Software, Multimedia, ...
e Education - - Universities, K-12, Courses, ...

¢ Entertainment [Xtrall - - TV, Movies, Music, Magazines, ...

o Health [Xtra!l - - Medicine, Drugs, Diseases, Fitness, ...

e News [Xtra!l - - World [Xtra!], Daily, Current Evenis, ...

* Recreation and Sports [Xtra!] - - Sports, Games, Travel, Autos, OQuidoors, ...
o Reference - - Libraries, Dictionaries, Phone Numbers, ...

o Regional - - Counrries, Regions, U.S. States, ...

o Science - - CS, Biology, Astronomy, Engineering, ...

o Social Science - - Anthropology, Sociology, Economics, ...

o Society and Culture - - People, Environment, Religion, ...

17 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

Web Today

Buscar en la Web
-

>
o
Q
Q

Iniciar sesién Correo

18

B4 Correo .)

Al utilizar Yahoo, aceptas que nosotros y nuestros socios podamos definir cookies para distintos fines, Lo mas buscado
B Noticias tales como personalizar el contenido y la publicidad.

2 1 Liga BBVA 6 Oferta hoteles
BN
%~ Deportes 2 US Open 7 Lionel Messi
44 Finanzas 3 Casas rurales 8 Vestidos mujer
Celebrity 4 Eurobasket 2015 9 Floyd Mayweather
) 5 Hordéscopo 10 Prevision tiempo
< Vida y Estilo
@ cine .
>

¥ Horéscopo ‘ =15
o Videos 4
Mds > 10 trucos para acelerar tu metabolismo

No tienes que pasarte el dia en el gimnasio, basta con entrenamientos en intervalos de alta

intensidad para quemar calorias, y sin dieta Maneras rapldas de perder peso » 150045
eBay

o ran ‘
i A
Meetic < .
Narcogram' en LQué fue do su vida? Malas noticias para Trucos para estar en Hay nk)o a 0 on esta
Internet Mayweather Jr forma
—_— © Oescibrelo
WM)*M“
N ‘ . C 1|~
M Liga - De Gea-United 2019: Algunas sorprendentes preguntas sin 29660, Marbella
El comador ded respuesta
Laberinto: El pertero David de Gea ha renovado su contrato con ¢l Manchester United y pone “C
Las pruecbas punto y final a uno de los grandes culebrones de los Gltimos tiempos.
Buen tiempo

En cines 18708/2015

Ewrospont

: H G Ma.
Los 10 lugares donde mejor se i - o
come de Espa a
Desde Sevilla a San Sebasti n haciendo parada en
Establocer C ceres, Madrid o Segovia, nos vamos a comer &l 299 ag9 2g¢

YAHOQ)! como
pégina de inicio

pa s, bocacdo a bocado
Skyscanner

Our applications are complex, and

growing...

ContentType

HTML
Images
Javascript
CSS

Total

19

8 1300 ot e 0
g p. PR
% 1000 t o000
& [‘._,.o"
) e o
b- I ' I ' I ' 1 ' I ' L l L l 1 l 1 . L l L l L l I 1 L
Jan2011 May2011 Sep2011 Jan2012 May2012 Sep2012 Jan 2013
Desktop Mobile
Avg # of Avgsize Avg # of Avgsize
requests requests
10 56 KB 6 40 KB
56 856 KB 38 498KB
5 36 KB 3 27 KB
86+ 1169+KB 57+ 711+KB

Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

HTTP requires a TCP connection

\

“Qrsn >

X TCP SYN ACK o

/’o’—_\

TCP ACK —

A

HTTP Request Before systems can exchange HTTP
messages, they must establish a TCP
HTP Resmnsee connection. Steps 1, 2, and 3 in this

V example show the connection

TCP FIN establishment. Once the TCP
”_// connection is available, the client
sends the server an HTTP request. The
@ rcrFin. Ack final two steps, 6 and 7, show the

__._/ / closing of the TCP connection.

Non-persistent HTTP: response time

RTT (round trip time): time for a

small packet to travel from N
client to server and back .
HTTP response time: mitiate 1o —\
= one RTT to initiate TCP RTT
connection request | /
fi —
= one RTT for HTTP request and h \
first few bytes of HTTP RTT < }
response to return oo /
e :
= file transmission time received
= non-persistent HTTP response v ,

time to
transmit
file

time = time time

= 2RTT+ file transmission time

21 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

Persistent Connection

\
Qo >

“STCP SYN, ACK o

\

TCP ACK

:TTP Response()
o HTTP Requeit

HTTP Responseo

,:'ifiﬁ/

w

Server
F

With persistent connections, a client
can issue many HTTP requests over a
single TCP connection. The first
request is in step 4, which the server
answers in step 5. In step 6 the client
continues by sending the server
another request on the same TCP
connection. The server responds to
this request in step 7 and then closes
the TCP connection.

Pipelining

Pipelining lets an HTTP client issue /’o’—\/
new requests without waiting for
responses from its previous \(—-—"\
messages. In the figure, the client TCPSYN, ACK o
sends its first request in step 4. It A
immediately follows that with a m o
second request in step 5. The client
does not wait for the server's
response, which arrives in step 6.

Server

HTTP Request 2
HTTP Response 1 o

G

HTTP Response 2

HTTP connections

non-persistent HTTP persistent HTTP
" at most one object sent over " multiple objects can be sent
TCP connection over single TCP connection

= connection then closed between client and server

" downloading multiple objects
required multiple connections

24 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

HTTP connections

Client

Establish connection

;4_ i
Close connection

Establish connection

-
Close connection

Establish connection

—

§4___-
Close connection

Short-lived connections

25

Server Client

awiL

Server

Establish connection

 ———
Close connection

Persistent connection

awiL

Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

Client Server

Establish connection

4 R
Close connection

HTTP Pipelining

26

Q

How does the HTTP request
composed ?

Making a simple HTTP request using Telnet

[MR-MBP-14955:~ ronchetsltelnet www.google.com 80 |

i

|
|
|
|
|
I
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Trying 216.58.206.36...
Connected to www.google.com.
Escape character is '"“]'.

ET / HTTP/1.1
Host: www.google.com

| HTTP/1.1 200 OK

Date: Sun, 09 Feb 2020 08:54:19 GMT
Expires: =1
Cache-Control: private, max-age=0

 Content-~Type: text/html; charset=IS0-8859-~1

P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."

' Server: gws

| X-XSS-Protection: 0

| X-Frame-Options: SAMEORIGIN

| Set-Cookie: 1P JAR=2020-02-09-08; expires=Tue, 10-Mar-2020 08:54:19 GMT; path=/;

domain=.google.com; Secure

 Set-Cookie: NID=197=BZn2l1JO1INIiKeLkhSA3YOTAgo5E0aCh8SjlileUG2a8d5Cw_1SQVcZ0j0hHS8

3nbl8ieVoFlVem51vbWiB4zHOEHXAOTS Bc4P20xmPPjuyFMwyvmPXTX24R2Cc09BiRbrbRKCirX7C2JrK

| £xbpXbInGWo002zWINXp2p0XZ0jWLP70; expires=Mon, 10-Aug-2020 08:54:19 GMT; path=/;

' domain=.google.com; HttpOnly
| Accept-Ranges: none

' Vary: Accept-Encoding

HTTP Requests

Request-Line

Message Headers
(optional)

General Headers

Request Headers

Entity Headers

Blank Line

Figure 3.1p

An HTTP request begins with a
Request-Line and may include
headers and a message body. The
headers can describe general
communications, the specific request,
or the included message body.

Message Body
(optional)

HTTP request message: general

format

method |sp URL sp | version cr | If
header field name value cr | If
header field name value cr | If
cr | If
2 entity body R

request
line

header
lines

body

29 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento = (e

HTTP requests and responses Messages

= HTTP requests and responses are both types of Internet Messages
(RFC 822), and share a general format:

= A Start Line, followed by a CRLF
= Request Line for requests
= Status Line for responses

= Zero or more Message Headers
= field-name ™:” [field-value] CRLF

= An empty line
= Two CRLFs mark the end of the Headers

= An optional Message Body if there is a payload
= All or part of the “Entity Body” or “Entity”

HTTP request message

" two types of HTTP messages: request, response

= HTTP request message:
= ASCIl (human-readable format) carriage return character

—

request line
(GET, POST,
HEAD commands)
header
lines

carriage return,
line feed at start
of line indicates
end of header lines

31

line-feed character

/
GET /index.htm| HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xmI\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: 1ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n

——\r\n

Method types

HTTP/1.0:

= GET, POST
= asks server to obtain an object

= HEAD
= asks server to leave requested object out of response

HTTP/1.1:
= GET, POST, HEAD

= PUT
= uploads file in entity body to path specified in URL field

= DELETE
= deletes file specified in the URL field

32

Uploading form input

POST method:
= web page often includes form input

" input is uploaded to server in entity body

URL method:
= yses GET method

" input is uploaded in URL field of request line:
= www.somesite.com/animalsearch?monkeys&banana

33

A Closer Look at the Request Methods

= GET
= By far most common method
= Retrieves a resource from the server

= Supports passing of query string arguments

= HEAD

= Retrieves only the Headers associated with a resource but not the entity itself

= Highly useful for protocol analysis, diagnostics
= POST
= Allows passing of data in entity rather than URL

= Can transmit of far larger arguments that GET

= Arguments not displayed on the URL

More Request Methods, cont.

OPTIONS

= Shows methods available for use on the resource (if given a path) or the host (if given a

u*n)

TRACE
= Diagnostic method for assessing the impact of proxies along the request-response chain

CONNECT

= A common extension method for Tunneling other protocols through HTTP

PUT, DELETE
= Used in HTTP publishing (e.g., WebDav)

Web-based Distributed Authoring and Versioning (WebDAV, RFC 4918) is
a set of methods based on the Hypertext Transfer Protocol (HTTP) that
facilitates collaboration between users in editing and managing
documents and files stored on World Wide Web servers.

idempotent methods

https://developer.mozilla.org/en-US/docs/Glossary/idempotent

An HTTP method is idempotent if an identical request can be made
once or several times in a row with the same effect while leaving
the server in the same state.

An idempotent method should not have any side-effects (except for
keeping statistics).

Implemented correctly, the GET, HEAD, PUT, and DELETE method
are idempotent, but not the POST method.

36

https://developer.mozilla.org/en-US/docs/Glossary/idempotent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/HEAD
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PUT
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/DELETE
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

safe methods

https://developer.mozilla.org/en-US/docs/Glossary/safe

An HTTP method is safe if it doesn't alter the state of the server.
A method is safe if it leads to a read-only operation.

Several common HTTP methods are safe: GET, HEAD, or OPTIONS.
All safe methods are also idempotent, but not all idempotent
methods are safe.

For example, PUT and DELETE are both idempotent but unsafe.

37

https://developer.mozilla.org/en-US/docs/Glossary/safe
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/HEAD
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/OPTIONS
https://developer.mozilla.org/en-US/docs/Glossary/idempotent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PUT
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/DELETE

Safe, unsafe and idempotent
methods

= GET /Eagex HTTP/1.1 is idempotent. Called several times in a row, the client
gets the same results:

= GET /pageX HTTP/1.1
= GET /pageX HTTP/1.1
= GET /pageX HTTP/1.1

= POST /add _row HTTP/1.1 is not idempotent; if it is called several times, it adds
several rows:

= POST /add_row HTTP/1.1
= POST /add_row HTTP/1.1 -> Adds a 2nd row
= POST /add_row HTTP/1.1 -> Adds a 3rd row

= DELETE /idX/delete HTTP/1.1 is idempotent, even if the returned status code
may change between requests:

= DELETE /idX/delete HTTP/1.1 -> Returns 200 if idX exists
= DELETE /idX/delete HTTP/1.1 -> Returns 404 as it just got deleted
= DELETE /idX/delete HTTP/1.1 -> Returns 404

38

A Closer Look at HTTP Headers

Headers come in four major types, some for requests, some for
responses, some for both:

- General Headers
e Provide info about messages of both kinds
- Request Headers
e Provide request-specific info
- Response Headers
e Provide response-specific info
- Entity Headers
e Provide info about request and response entities
— Extension headers are also possible

General Headers

Connection - lets clients and servers manage connection state
= Connection: Keep-Alive

= Connection: close

Date - when the message was created
= Date: Sat, 31-May-03 15:00:00 GMT

Via - shows proxies that handled message
= Via: 1.1 www.myproxy.com (Squid/1.4)

Cache-Control - Among the most complex of headers, enables caching

directives

= Cache-Control: no-cache

Request Headers

= Host - The hostname (and optionally port) of server to which
request is being sent
= Referer — The URL of the resource from which the current request
URI came
= Referer: http://www.host.com/login.asp
= User-Agent - Name of the requesting application, used in browser
sensing
= User-Agent: Mozilla/4.0 (Compatible; MSIE 6.0)
= Accept and its variants — Inform servers of client’s capabilities and

preferences
= Enables content negotiation
= Accept: image/gif, image/jpeg;q=0.5
= Accept- variants for Language, Encoding, Charset
= Cookie How clients pass cookies back to the servers that set them
= Cookie: id=23432;level=3

How to view HTTP headers in Google Chrome?

= In Chrome, visit a URL, rights ¢
click, select Inspect to openg=)

the developer tools.
= Select Network tab.

= Reload the page, select any -
HTTP request on the left
panel, and the HTTP
headers will be displayed
on the right panel.

Elements Console
© W Y | View: i =
l 200000ms 400000ms 600000 ms
Name

| cl6ss.css?ver=4.3.2
| prism.css?ver=1.1

[| logo.png
| | bootstrap.css?ver=3.3.5
[| style.css?ver=1.3.5
|| jquery.min.js
[] prism.js?ver=1.1
| | main.js?ver=1.3.5
U brand?form=cse-search-box&lang=en
| | adsbygoogle.js
| | bootstrap.min.js
|--| meteor-logo.png
[<| spring-logo.png
|«| tomcat-logo.png
[-] java8_logo.png
|| json-150x99.png

Sources

800000 ms

. www.mkyong.com 2
| | c16rp.css?ver=4.3.2

Networkcline Profiles Resources Audits
“I Preserve log isable cache = No throttling v

“)Hide data URLs (1) XHR JS CSS Img Media Font Doc WS Other

1000000ms 1200000ms 1400000ms 1600000ms 1800000ms 2000000ms 220000C

x HeadersQew Response Cookies Timing

¥ General
Request URL: http://www.mkyong.com/
Request Method: GET
Status Code: @ 200 0K
Remote Address: 104.24.29.10:80

¥ Response Headers view source
Cache-Control: public, max-age=86400
CF-Cache-Status: HIT
CF-RAY: 267fa87d236b2cf3-KUL
Connection: keep-alive
Content-Encoding: gzip
Content-Length: 6903
Content-Type: text/html; charset=UTF-8
Date: Thu, 21 Jan 2016 02:41:06 GMT
Expires: Fri, 22 Jan 2016 02:41:06 GMT
Pragma: no-cache
Server: cloudflare-nginx
Vary: Accept-Encoding
X-Pingback: http://www
X-Powered-By: W3 Tota

om/xmlrpc.php

¥ Request Headers view ?/ ng ong Com

Accept: text/html,applic tml+xml,application/xml;q=@.9, image/webp,
Accept-Encoding: qzip, deflate, sdch

https://mkyong.com/computer-tips/how-to-view-http-headers-in-google-chrome/

response

HTTP

o
<

HTTP response messages

status line

(protocol \

status code
status phrase)

———

header
lines

data, e.g.,
requested

HTML file —

44

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n

Content-Type: text/html; charset=IS0-8859-1\r\n
\r\n

data data data data data ...

A Closer Look at the Status Line

= Consists of three major parts:

= The HTTP Version

= Just like third part of Request Line

= Status Code

= 5 groups of 3 digit integers indicating the result of the attempt to satisfy the

requestThe Reason Phrase followed by the CRLF

= Short textual description of the status code
Table 3.2 HTTP Status Code Categories

Status Code Meaning

100-199

200-299

300-399

400-499

500-599

Informational; the server received the request but a final
resultis not yet available.

Success; the server was able to act on the request suc-
cessfully.

Redirection: the client should redirect the request toa
different server or resource.

Client error; the request contained an error that pre-
vented the server from acting on it successfully.

Server error; the server failed to act on arequest even
though the request appears to be valid.

HTTP response status codes examples

" status code appears in 1st line in server-to-client response
message.

" some sample codes:
= 200 OK
= request succeeded, requested object later in this msg
301 Moved Permanently

= requested object moved, new location specified later in this msg
(Location:)

= 400 Bad Request

= request msg not understood by server
404 Not Found

= requested document not found on this server
505 HTTP Version Not Supported

46

Response Headers

= Server - The server’s name and version

= Server: Microsoft-1IS/5.0
= Can be problematic for security reasons

= Set-Cookie - This is how a server sets a cookie on a client

= Set-Cookie: id=234; path=/shop; expires=Sat, 31-May-03
15:00:00 GMT,; secure

Entity Headers

= Allow - Lists the request methods that can be used on the entity
= Allow: GET, HEAD, POST

= Location - Gives the alternate or new location of the entity
= Used with 3xx response codes (redirects)

= Location: http://www.iugaza.edu.ps/ar/

= Content-Encoding - specifies encoding performed on the body of the

response
= Used with HTTP compression
= Corresponds to Accept-Encoding request header
= Content-Encoding: gzip

= Content-Length - The size of the entity body in bytes

= Content-Location - The actual if different than its request URL

= Content-Type - specifies Media (MIME) type of the entity body

http://www.iugaza.edu.ps/ar/

HTTPS

HTTP + SSL

Slides from HTTP vs. HTTPS by Eng. T. Aldaldooh

HTTPS

Figure 4.10 p Standard HTTP HTTP Secured with SSL
The SSL protocol inserts itself I G oo I
between an application like HTTP and ; HTTP : HTTP
the TCP transport layer. TCP sees SSL : :
as just another application, and HTTP : I t
communicates with SSL much the : : SSL
same as it does with TCP. TCP t

i
)
0

=
o O

Network Technology Network Technology

I J . I J

HTTPS only slightly slower than HTTP.

HTTPS is a bit more complex to set up
(due to the need of a certificate)

Cryptography for dummies

Important information Data, Data, Data.

Plain Text

Encryption

Encryption Algorithm
= cipher

Some random String

Hh2sh!~hH==E#@ns86/76% ===sdf

Cipher Text

Hyper-basic example

Msg: “Good Morning”

Encription algorithm: shift letters forward by n
Key: n

Encoded msg, with key=1: “Hppe Npsojoh”

Encoded msg, with key=2: “Iqgf Oqtpkpi”

Decription algorithm: shift letters backward by n

52 Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento = &8

Cryptography cont.

Important information Data, Data, Data.

Symmetric Key

Decryption

Algorithm _"HH D

Some random String

Hh2sh!~hH==E#@ns86/76% ===sdf

Asymmetric (public-key) encryption

#PS===9%9/98SU@ #IF==HY~iYscyH

Public
Key

"eyjeq ‘ejeq ‘ejeq uoneuw.ojui jueliodwt

C
0
s}

o

>

(-

O

Q
©

>

Q
-z

O
-
)

Q

=

=
>

v

C

(qv)
e
Y

(-

Q

S
O

)
2

C
0
)

o

>

(-

O

Q
©

>

Q
Y4

(@)
-
Y

Q

=

=
>

(7p]
<

SSL Session

= Uses asymmetric encryption to privately share the
session key

= Asymmetric has a lot of overhead

= Uses symmetric encryption to encrypt data

= Symmetric encryption is quicker and uses less
resource

SSL Handshake Process

Client creates session key

53

Session key
encrypted with public

key()

At this point only client
knows session key

Client requests HTTPS session

Certificate sent back (with public key)

A

Encrypted session key sent to server

Session encrypted with

symmetric session key (53)

session key
decrypted with
private key

At this point both
client and server
knows session key

MW}

J

\3}

Facebook X

/1, Untrusted Connection

.('/."Z” ‘dg https://www.gcc.gov.ps/index.php?option=com_gcclogin

C ™ Firefox > | e
= | b
N A
S\
» | e
] W = oy
al l General Media Feeds
Web Site Identity
Web site: mail.google.con
M: Owner: This web site dc
Verified by: Thawte Consulti
it
il Privacy & History
Have I visited this web site prior
Is this web site storing informati
I computer?
Have I saved any passwords for
Technical Details
Connection Encrypted: High-g
The page you are viewing was e
Encryption makes it very difficul
computers, It is therefore very u
MS
.\
number authc
Gmai
fri -
T'end abu k
m |- info
php ¥ Next 4 Previ

Latest News fom Gmak
C R UNSAC 8 Fe

LastF
upwin

Santa 0pened up e Ho
241 10 38nd personalzed M

This Connection is Untrusted

You have asked Firefox to connect securely to www.gcc.gov.ps, but we can't confirm that your
connection is secure,

Normally, when you try to connect securely, sites will present trusted identification to prove
that you are going to the right place. However, this site's identity can't be verified.

What Should I Do?

If you usually connect to this site without problems, this error could mean that someone is
trying to impersonate the site, and you shouldn’'t continue.

[Get me out of here!]

Technical Details

www.gcc.gov.ps uses an invalid security certificate.

The certificate is not trusted because the issuer certificate is not trusted.

(Error code: sec_error_untrusted_issuer)

I Understand the Risks

If you understand what's going on, you can tell Firefox to start trusting this site's

identification. Even if you trust the site, this error could mean that someone is tampering with
your connection.

Don't add an exception unless you know there's a good reason why this site doesn't use
trusted identification.

[Add Exception...

0:47:82:75:3A:9B:B9

7:C4:4C:4D:44:9D:CF:25:8C:D5:34
C:5F:96:DB:CF:B6:6F

Fui%3D2&service=mail&rm=f 77 ~ C'|

ocons

@ x

Google

Other security issues

= Who guarantees that the certificate is authentic?
= “"Chain of trust”

= More in the security courses

Conclusion

= HTTPS only slightly slower than HTTP.

Reference

» HTTP Essentials Protocols for Secure, Scaleable Web Sites by
Stephen Thomas .
» HTTP The Definitive Guide.

» View HTTP Request and Response Header < http://web-
sniffer.net/ >

Traffic optimization 1:
HTTP: proxy

Web caches (proxy server)

Goal: satisfy client request
without involving origin server

= user sets browser: Web
accesses via cache

" browser sends all HTTP
requests to cache

= object in cache: cache
returns object

= else cache requests object
from origin server, then
returns object to client

origin
server

\
i
Al

origin
server

61

More about Web caching

" cache acts as both client and why Web caching?
Server " reduce response time for
= server for original requesting client request
client

* reduce traffic on an

= client to origin server RN _
institution’s access link

= typically cache is installed by ,
ISP (university, company, - Internetflense”wnh caches:
residential ISP) enables “poor” content

providers to effectively deliver
content (so too does P2P file

sharing)

62

Conditional GET

client | ‘f server
" Goal: don’t send object if 7
cach_e has up-to-date cached __| HTTP request msg §
version If-modified-since: <date> — object
= no object transmission delay not
—— modified
= lower link utilization o HTTHPT;‘;;;’%“SE before
. . <date>
" cache: specify date of cached 304 Not Modified
copy in HTTP request
= |f-modified-since: <date>
" server: response contains no = — HTTP request msg
object if cached copy is up-to- If-modified-since: <date> — object
date: modified
HTTP response — after

= HTTP/1.0 304 Not Modified «— HTTP/1.0 200 OK

<data>

63

Traffic optimization 2:

Video streaming and
CDNs

Content Distribution Networks

Video Streaming and CDNs: context

" video traffic: major consumer of Internet bandwidth

= Netflix, YouTube: 37%, 16% of downstream residential ISP traffic
= ~1B YouTube users, ~75M Netflix users

= challenge: scale - how to reach ~1B users?
= single mega-video server won’t work (why?)

" challenge: heterogeneity

= different users have different capabilities (e.g., wired versus mobile;
bandwidth rich versus bandwidth poor)

= solution: distributed, application-level infrastructure

65

spatial coding example: instead of

IV' u Iti m Ed ia : Vi d eo sending N values of same color (all

purple), send only two values: color
value (purple) and number of
repeated values (N)

= video: sequence of images
displayed at constant rate

= e.g., 24 images/sec

= digital image: array of pixels
= each pixel represented by
bits
= coding: use redundancy within
and between images to

decrease # bits used to
encode image

= spatial (within image) temporal coding example:

= temporal (from one image to ;::trﬁz‘iff+sle:<ii:§gmp'ete
next) /

differences from frame i

frame i

66

Streaming stored video

= Simple scenario:

video server
(stored video)

Intern

67

client

Streaming multimedia: DASH

DASH: Dynamic, Adaptive Streaming over HTTP

= server:
= divides video file into multiple chunks
= each chunk stored, encoded at different rates
= manifest file: provides URLs for different chunks

= client:
= periodically measures server-to-client bandwidth

= consulting manifest, requests one chunk at a time
= chooses maximum coding rate sustainable given current bandwidth

= can choose different coding rates at different points in time
(depending on available bandwidth at time)

68

Streaming multimedia: DASH

DASH: Dynamic, Adaptive Streaming over HTTP

" “intelligence” at client: client determines

= when to request chunk (so that buffer starvation, or overflow does
not occur)

= what encoding rate to request (higher quality when more
bandwidth available)

= where to request chunk (can request from URL server that is “close”
to client or has high available bandwidth)

69

Content distribution networks

= challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

= option 1: single, large “mega-server”
= single point of failure
= point of network congestion
= |ong path to distant clients
= multiple copies of video sent over outgoing link

= quite simply: this solution doesn’t scale

70

Content distribution networks

= challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

= option 2: store/serve multiple copies of videos at multiple
geographically distributed sites (CDN)
= enter deep: push CDN servers deep into many access networks
= close to users
= used by Akamai, 1700 locations

= bring home: smaller number (10’s) of larger clusters in POPs near
(but not within) access networks

= used by Limelight

71

Content Distribution Networks
(CDNs)

= CDN: stores copies of content at CDN nodes
= e.g. Netflix stores copies of MadMen

= subscriber requests content from CDN
 directed to nearby copy, retrieves content
* may choose different copy if network path congested

