
Q
How can we avoid unresponsiveness
of pages ?

1

2

ht
tp

d

In
te
rn
et

HTTP Request

Cgi-bin Query SQL

pr
oc

es
s

DB

Data

Client

Smart
browser

Server

File System

HTTP Response

The form nightmare…3

Ajax !
§ not a technology in itself: it is a term coined in 2005 by Jesse James

Garrett: “Asynchronous JavaScript + XML”.
§ new development technique
w blur the line between web-based and desktop applications.
w rich, highly responsive and interactive interfaces

Ajax was born as:
§ dynamic presentation based on XHTML + CSS;
§ dynamic display and interaction using Document Object Model;
§ data exchange and manipulation using XML e XSLT;
§ asynchrounous data fetching using XMLHttpRequest;
§ JavaScript as glue.

4

How does Ajax work?

§ The core idea behind AJAX is to make the communication with the
server asynchronous, so that data is transferred and processed in
the background.

§ As a result the user can continue working on the other parts of
the page without interruption.

§ In an AJAX-enabled application only the relevant page elements
are updated, only when this is necessary.

5

The paradigms

1.0 2.0

Pictures after
Jesse James Garrett

6

The models

1.0

2.0

Pictures after
Jesse James Garrett

7

Load Page Load Page Load Page

Load Page

The heart and history of Ajax

§ First used after Microsoft implemented Microsoft XMLHTTP COM
object that was part of The Microsoft® XML Parser (IE 5.1)

w Similarly supported by a Mozilla Javascript object
XMLHttpRequest (Mozilla 1.0, Firefox, Safari 1.2 etc.)

w Massively used by Google

Other labels for the same technology were Load on Demand,
Asynchronous Requests, Callbacks, Out-of-band Calls, etc.

8

if (window.XMLHttpRequest) { // Mozilla, Safari, ...
http_request = new XMLHttpRequest();

} else if (window.ActiveXObject) { // IE
http_request = new ActiveXObject("Microsoft.XMLHTTP");

}

The (impressive!) result9

Ajax - advantages

w Better Performance and Efficiency
§ small amount of data transferred from the server. Beneficial for data-

intensive applications as well as for low-bandwidth networks.

w More Responsive Interfaces
§ the improved performance give the feeling that updates are happening

instantly. AJAX web applications appear to behave much like their desktop
counterparts.

w Reduced or Eliminated "Waiting" Time
§ only the relevant page elements are updates, with the rest of the page

remaining unchanged. This decreases the idle waiting time.

w Increased Usability
w Users can work with the rest of the page while data is being transferred in

the background.

10

XMLHttpRequest (XHR)

function loadDoc() {
var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {
document.getElementById("demo").innerHTML =

this.responseText;
}

};
xhttp.open("GET", "ajax_info.txt", true);
xhttp.send();

}

11

Asynchronous
Programming!

see https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

XMLHttpRequest (XHR)

12

Asynchronous
Programming!

The XMLHttpRequest.readyState property returns the state an
XMLHttpRequest client is in. An XHR client exists in one of the
following states:

Value State Description

0 UNSENT Client has been
created. open() not called yet.

1 OPENED open() has been called.

2 HEADERS_RECEIVED
send() has been called, and
headers and status are
available.

3 LOADING Downloading; responseText hol
ds partial data.

4 DONE The operation is complete.

XMLHttpRequest –
Getting static resources
function loadDoc() {

var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {
document.getElementById("demo").innerHTML =

this.responseText;
}

};
xhttp.open("GET", "ajax_info.txt", true);
xhttp.send();

}

13

Getting dynamic resources with GET

function loadDoc() {
var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {
document.getElementById("demo").innerHTML =

this.responseText;
}

};
xhttp.open("GET", "myservlet?param1=27", true);
xhttp.send();

}

14

Note: if you want to avoid getting cashed results, add a fake parameter
with the current time, e.g.

xhttp.open("GET", url + ((/\?/).test(url) ? "&" : "?") + (new Date()).getTime());

See https://www.w3schools.com/jsref/jsref_regexp_test.asp to understand the code above

https://www.w3schools.com/jsref/jsref_regexp_test.asp

Getting dynamic resources with POST

function loadDoc() {
var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {
document.getElementById("demo").innerHTML =

this.responseText;
}

};
xhttp.open("POST", "ajax_info.txt", true);
xhttp.setRequestHeader("Content-type",

"application/x-www-form-urlencoded");

xhttp.send("nome=Dorothea&lname=Wierer");
}

15

1) add an HTTP header with setRequestHeader().
2) Specify the data you want to send in the send() method

XMLHttpRequest methods

16

new XMLHttpRequest() Creates a new XMLHttpRequest object

abort() Cancels the current request

getAllResponseHeaders() Returns header information

getResponseHeader() Returns specific header information

open(method, url, async, user, psw) Specifies the request

method: the request type GET or POST
url: the file location
async: true (asynchronous) or false (synchronous)
user: optional user name
psw: optional password

send() Sends the request to the server
Used for GET requests

send(string) Sends the request to the server.
Used for POST requests

setRequestHeader() Adds a label/value pair to the header to be sent

XMLHttpRequest properties

17

Property Description

onreadystatechange Defines a function to be called when the readyState property
changes

readyState Holds the status of the XMLHttpRequest.
0: request not initialized
1: server connection established
2: request received
3: processing request
4: request finished and response is ready

responseText Returns the response data as a string

responseXML Returns the response data as XML data

status Returns the HTTP status-number of a request, e.g.
200: "OK"
403: "Forbidden"
404: "Not Found"

statusText Returns the status-text (e.g. "OK" or "Not Found")

18

ht
tp

d

In
te
rn
et

HTTP Request

Cgi-bin Query SQL

pr
oc

es
s

DB

Data

Client

Smart
browser

Server

File System

HTTP Response

Data Injection

Traditional, server side page creation

19

ht
tp

d

In
te
rn
et

HTTP Request

Cgi-bin Query SQL

pr
oc

es
s

DB

Data

Client

Smart
browser

Server

File System

HTTP ResponseData Injection

Ajax processing

And make sure that you…

§ Preserve the Normal Page Lifecycle – as much as possible!
§ Reflect Control State on the Server – in real-life scenarios there is

no use of simply rendering controls on the page.
§ Support Cross-Browser usage – there are different

implementation of the XmlHttpRequest object. You should make
sure that all AJAX components you choose operate properly on
various browsers and platforms.

§ Ensure proper Operation when Cookies are Disabled – support
cookieless sessions.

20

And make sure that you…
w Give visual feedback - When a user clicks on something in the AJAX user

interface, they need immediate visual feedback
w Keep the Back button – make sure that the Back button in your application

functions on every page of the site.

w Use links for navigation – avoid the temptation to use links as an interface on
your AJAX application to change the state of your application. Users have
been trained over many years to expect a link to “take” them somewhere, so
give them what they expect.

w Use human-readable links – people like to pass the addresses of useful web
pages to each other. Make sure your application supports URLs that people
can share easily, so not too long or complex.

Adapted from: www.telerik.com/documents/Telerik_and_AJAX.pdf

21

AJAX Tutorial and reference

22

https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX

https://www.w3schools.com/js/js_ajax_intro.asp

https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
https://www.w3schools.com/js/js_ajax_intro.asp

