
Q
What are dynamic pages and
how do we manage them ?

1

ht
tp

d

The original web architecture: dynamic pages

In
ter

ne
t

HTTP Get + params

Cgi-bin

pr
oc

es
s

Client

Browser Server

File System

Evolution 1: dynamically create (interlinked) documents

The web programmer also writes
programs, using the programming
language of her/his choice.

STEP 1:
LET’S INSTALL A (APACHE)

WEB SERVER

3

Let’s install a Web Server

We will, step by step:
1. install Apache (with a series of extra

tools: DB and languages – Perl and PHP)
2. Customize it (e.g. by changing port)
3. Customize its response (static files)

4. Attack the dynamic content problem

4

XAMPP
https://www.apachefriends.org/download.ht
ml

What does XAMPP means? Generalization of WAMP,
LAMP, MAMP

W = Windows, L=Linux, M=Mac, X=Anything
A = Apache Web Server
M = MySQL , MariaDB
P = PHP
P = Perl

5

https://www.apachefriends.org/download.html

XAMPP download

6

https://www.apachefriends.org/download.html

Follow the
documentation

https://www.apachefriends.org/download.html

XAMPP
download

7

VM Installation (e.g. on Mac)…

8

LAMPP is installed on a virtual machine.

We need to:
- Connect the port on our machine (e.g. 8080) to the

80 port on the VM

- Access the VM file system from our file system

Mac users: do not use the VM version, bur rather use this:
https://sourceforge.net/projects/xampp/files/XAMPP%20Mac%20OS%20X/7.4.2/

(Current version: 7.4.23)

https://sourceforge.net/projects/xampp/files/XAMPP%20Mac%20OS%20X/7.4.2/

First run: setup - 1

9

First run: setup - 2

10

First run:

11

XAMPP Manager:

12

/MacintoshHD/Applications/XAMPP/xamppfiles

XAMPP Manager:

13

XAMPP Manager:

14

Main files e directories

15

XAMPP Manager

HTTP Server filesystem

Executables for dynamic pages

Modifying server content

16

MR-MBP-14955:local ronchet$ cd /Applications/XAMPP/xamppfiles/htdocs
MR-MBP-14955:htdocs ronchet$ touch index.html
MR-MBP-14955:htdocs ronchet$ vi index.html
MR-MBP-14955:htdocs ronchet$ cat index.html
hello

Create empty file
Edit file
Show content

APACHE DEFAULTS ARE: index.html, index.php

Apache configuration

See
http://www.cellbiol.com/bioinformatics_web_
development/chapter-2-the-linux-operating-
system-setting-up-a-linux-web-
server/apache-web-server-configuration/

(has to be adapted to your locations)

17

http://www.cellbiol.com/bioinformatics_web_development/chapter-2-the-linux-operating-system-setting-up-a-linux-web-server/apache-web-server-configuration/

STEP 2:
LET’S USE OUR WEB SERVER

TO GENERATE DYNAMIC PAGES

18

Dynamic pages: the main idea:
We want to obtain NON STATIC
information from the server. This implies
executing some code on it, and send the
results to the user.

e.g.: what’s the time?

19

ht
tp

d

The original web architecture: dynamic pages

In
ter

ne
t

HTTP Get + params

Cgi-bin

pr
oc

es
s

Client

Browser Server

File System

Evolution 1: dynamically create (interlinked) documents

The first implementation: CGI
The Common Gatway Interface was (is) a
way to tell the server to spawn a process, get
its results and send them as HTTP response.
Reading:
• https://computer.howstuffworks.com/cgi.htm
• https://en.wikipedia.org/wiki/Common_Gateway_
Interface

Follower: FastCGI
• https://en.wikipedia.org/wiki/FastCGI

21

https://computer.howstuffworks.com/cgi.htm
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://en.wikipedia.org/wiki/FastCGI

Creating dynamic pages

22

MR-MBP-14955:local ronchet$ cd /Applications/XAMPP/xamppfiles/cgi-bin
MR-MBP-14955:htdocs ronchet$ touch getTime.sh
MR-MBP-14955:htdocs ronchet$ vi getTime.sh
MR-MBP-14955:htdocs ronchet$ cat getTime.sh
#!/bin/sh
echo `date`
MR-MBP-14955:cgi-bin ronchet$ ls -la getTime.sh
-rw-r--r-- 1 ronchet admin 22 Feb 11 22:26 getTime.sh
MR-MBP-14955:cgi-bin ronchet$ chmod 755 getTime.sh
MR-MBP-14955:cgi-bin ronchet$ ls -la getTime.sh
-rwxr-xr-x 1 ronchet admin 22 Feb 11 22:26 getTime.sh
MR-MBP-14955:cgi-bin ronchet$./getTime.sh
Tue Feb 11 22:28:56 CET 2020

Create empty file
Edit file
Show content

Show permissions

Make file executable
Show permissions again

Execute file

23

Creating dynamic pages

24

MR-MBP-14955:local ronchet$ cd /Applications/XAMPP/xamppfiles/cgi-bin
MR-MBP-14955:htdocs ronchet$ vi getTime.sh
MR-MBP-14955:htdocs ronchet$ cat getTime.sh
#!/bin/sh
echo "Content-type: text/plain; charset=iso-8859-1"
echo
echo `date`

Edit file
Show content

Getting info about the request

25

BROWSER HTTPD
Process

Invoked
Process

HTTP Request Spawn process

Write on stdoutHTTP Response

Client
machine

Server
machine

Environment
Variables

Write Read

Access to environment vars is supported
in all programming languages!

Getting info about the request

26

Testing it…

27

You need to modify test-cgi
as described in the file itself

HTTP, HTTPS and
TCP Networking in Java

Some reminders

Q
Reminder: How is I/O managed
in Java?

29

I/O in Java
Byte Based Character Based

Input Output Input Output

Basic InputStream OutputStream
Reader Writer

InputStreamReader OutputStreamWriter

Arrays ByteArrayInputStream ByteArrayOutputStream CharArrayReader CharArrayWriter

Files
FileInputStream FileOutputStream

FileReader FileWriter
RandomAccessFile RandomAccessFile

Pipes PipedInputStream PipedOutputStream PipedReader PipedWriter

Buffering BufferedInputStream BufferedOutputStream BufferedReader BufferedWriter

Filtering FilterInputStream FilterOutputStream FilterReader FilterWriter

Parsing
PushbackInputStream PushbackReader

StreamTokenizer LineNumberReader
Strings StringReader StringWriter

Data DataInputStream DataOutputStream

Data -
Formatted PrintStream PrintWriter

Objects ObjectInputStream ObjectOutputStream

Utilities SequenceInputStream

There is also nio

Q
Reminder: What is a socket?

31

Sockets
The java.net.Socket class represents a side of
connection (regardless if client o or server).

The server uses the java.net.ServerSocket class to
wait for incoming conversations. It creates a
ServerSocket object and waits, blocked on a
accept() call until a connection comes. Then it
creates a Socket object to be used to communicate
with the client.

see https://docs.oracle.com/javase/tutorial/networking/index.html

https://docs.oracle.com/javase/tutorial/networking/index.html

Sockets
A server can maintain many conversations

simoultaneously.
There is only one ServerSocket, but one Socket

for every client.

Server port
The client needs two pieces of info to establish a
connection: a hostname (to get the server’s address) and a
port number (to identify a process on the server
machine).

A server app listens on a predefined port while waiting
for a connection.

Port numbers are coded in the RFC (Es. Telnet 23, FTP 21,
ecc.), but they can be freely chosen for custom services.

Client port
The client’s port number is generally assigned by
the OS, and in general you do not care about it.

When the server responds it opens a new socket
whose number is assigned by the OS. It then
continues listening on the original port, and
serves the particular cliens on the new socket.

Sockets

The first choice is which protocol to use:
connection-oriented (TCP)
or
connectionless (UDP).

The Java Socket class uses TCP

java.net.Socket

This class implements a socket for interprocess
communication over the network.

The constructors create the socket and connect it to the
specified host on the specified port.

java.net.Socket - main methods
.

Once the socket is created, getInputStream() e
getOutputStream() return InputStream e OutputStream
objects (usable as I/O channels).

getInetAddress() e getPort() return address and port to
which the socket is connected.

close() closes la socket.

java.net.ServerSocket

During creation you specify on which port to
listen

The accept() starts listening and blocks until
there is an incoming call.

At that point, accept() accepts the connection,
creates and returns a Socket that the server can
use to talk to the client.

E
Example: simple conversation on a
socket.
(see the IntelliJ project on the web site)

40

Reading & Writing newline delimited strings –
Server

public class SocketServerDemo {
public static void main(String a[]){

try {
ServerSocket listener = new ServerSocket(1234);
while (true) {

Socket aClient = listener.accept(); // wait for connection
// set up I/O
InputStream in = aClient.getInputStream();
InputStreamReader din = new InputStreamReader(in);
BufferedReader bin = new BufferedReader(din);
OutputStream out = aClient.getOutputStream();
PrintStream pout = new PrintStream(out);
// Read a string
String request = bin.readLine();
System.out.println("Got from the client "+request);

// Write a string
String greeting="Goodbye! you were on port "+aClient.getPort();
pout.println(greeting);
System.out.println("Said to the client "+greeting);

aClient.close();
}
listener.close();

} catch (IOException e) {//… }
}

}

Reading & Writing newline delimited strings –
Server

public class SocketClientDemo {
public static void main(String a[]) {

try {
Socket server = new Socket("localhost", 1234); // open connection
// set up I/O
InputStream in = server.getInputStream();
InputStreamReader din = new InputStreamReader(in);
BufferedReader bin = new BufferedReader(din);
OutputStream out = server.getOutputStream();
PrintStream pout = new PrintStream(out);

// send newline delimited string
String greeting="Hello";
pout.println(greeting);
System.out.println("Said to the server "+greeting);

// Read a newline delimited string
String response = bin.readLine();
System.out.println("Got from the server "+response);

} catch (IOException e) {
e.printStackTrace(//…);

}
}

}

Q
How can we write a simple HTTP server?

(see the IntelliJ project on the web site)

43

A concurrent HTTP mini-server -
Introduction

•

TinyHttpd listens on a specified port and services simple
HTTP "get file" requests. They look something like this:
GET /path/filename [optional stuff]

Your Web browser sends one or more as lines for each
document it retrieves. Upon reading the request, the server
tries to open the specified file and send its contents. If that
document contains references to images or other items to be
displayed inline, the browser continues with additional GET
requests. For best performance (especially in a time-slicing
environment), TinyHttpd services each request in its own
thread. Therefore, TinyHttpd can service several requests
concurrently.

•public class TinyHttpd {
public static void main(String argv[])

throws IOException {
int port = 8888;
if (argv.length>0) port=Integer.parseInt(argv[0]);
ServerSocket ss = new ServerSocket(port);
System.out.println("Server is ready");
while (true)

new TinyHttpdConnection(ss.accept());
}

}

A concurrent mini HTTP daemon

class TinyHttpdConnection extends Thread {

Socket sock;

TinyHttpdConnection(Socket s) {
sock = s;
setPriority(NORM_PRIORITY - 1);
start();

}

starts a new thread, and executes the method "run" in it.

The method "run" MUST be implemented by every subclass of Thread

By lowering its priority
to NORM_PRIORITY-1
(just below the default
priority), we ensure
that the threads
servicing established
connections won't
block TinyHttpd's main
thread from accepting
new requests.

A concurrent mini HTTP daemon

public void run() {
System.out.println("=========");
System.out.println("Connected on port "+sock.getPort());
OutputStream out = null;
try {

// OPEN SOCKETS FOR READING AND WRITING
BufferedReader d =

new BufferedReader(new InputStreamReader(
sock.getInputStream()));

out = sock.getOutputStream();
PrintStream ps=new PrintStream(out);

Set up I/O

A concurrent mini HTTP daemon

A concurrent mini HTTP daemon

// READ REQUEST
String req = d.readLine(); // first line contains request
if (req==null) return;
System.out.println("Request: " + req);
// READ REQUEST HEADERS
String head=null;
do { // following lines contain headers

head = d.readLine();
System.out.println("Header: " + head);

} while (head!=null && head.length()>0);
// PARSE REQUEST
StringTokenizer st = new StringTokenizer(req);
if ((st.countTokens() >= 2) && st.nextToken().equals("GET")){

if ((req = st.nextToken()).startsWith("/")) {
req = req.substring(1);

}
if (req.endsWith("/") || req.equals("")) {

req = req + "index.html";
}

Read and deal with request

A concurrent mini HTTP daemon

// OPEN REQUESTED FILE AND COPY IT TO CLIENT
try {

//All our requested files must be in the "Documents" directory
FileInputStream fis = new FileInputStream("Documents/"+req);
int responseLength=fis.available();
// LET'S SEND THE RESPONSE HEADERS
ps.print("HTTP/1.1 200 OK\r\n");
ps.print("Content-Length: "+responseLength+"\r\n");
ps.print("Content-Type: text/html\r\n");
ps.print("\r\n");
// LET'S SEND THE CONTENT
byte[] data = new byte[responseLength];
fis.read(data);
out.write(data);
fis.close();

} catch (FileNotFoundException e) {
ps.print("HTTP/1.1 404 Not Found \r\n\r\n");
System.out.println("404 Not Found: " + req);

}

Prepare and send the response

A concurrent mini HTTP daemon

} else {
ps.print("HTTP/1.1 400 Bad Request\r\n\r\n");
System.out.println("400 Bad Request: " + req);

}
} catch (IOException e) { // Let's catch all generic I/O troubles

System.out.println("Generic I/O error " + e);
} finally { // the following code is ALWAYS executed

try {
// let's close all channels
out.close();
sock.close();

} catch (IOException ex) {
System.out.println("I/O error on close" + ex);

}
}
}
}

Let's finish up

•

} catch (IOException e) {
System.out.println("Generic I/O error " + e);

} finally {
try {

out.close();
} catch (IOException ex) {

System.out.println("I/O error on close" + ex);
}

}
}

}

A concurrent mini HTTP daemon

A concurrent HTTP mini-server - usage

•

Compile TinyHttpd and place it in your class path. Go to a
directory with some interesting documents and start the
daemon, specifying an unused port number as an argument.
For example:

% java TinyHttpd 1234

You should now be able to use your Web browser to retrieve
files from your host. You'll have to specify the nonstandard
port number in the URL. For example, if your hostname is
foo.bar.com, and you started the server as above, you could
reference a file as in:

http://foo.bar.com:1234/welcome.html

A concurrent HTTP mini-server - Problems

•TinyHttpd still has room for improvement. First, it
consumes a lot of memory by allocating a huge array

to read the entire contents of the file all at once. A
more realistic implementation would use a buffer
and send large amounts of data in several passes.

A concurrent HTTP mini-server - Problems

•

TinyHttpd suffers from the limitations imposed by
the fickleness of filesystem access.

It's important to remember that file pathnames are
still architecture dependent--as is the concept of a
filesystem to begin with. TinyHttpd works, as is, on
UNIX systems. It needs adaptation for the
Windows world.

E
Exercise: get ready for the first assignment:
1) Install Apache, follow the steps
2) Install IntelliJ, open and run the distributed

project

55

