
Dynamic Web site, without using Web Languages

Assignment 1

Assignment 1 – part 1
Modify the simple web server so that all the URLs that start with the token "process "
(e.g. http://localhost:8000/process) launch an external process.

http://localhost:8000/process/reverse?par1=string
should activate an (external) process that takes the parameter string.
and returns the reversed string (e.g. ROMA -> AMOR).

Suggestions:
To see how to start an external process from Java, take a look at one of these:
•http://www.rgagnon.com/javadetails/java-0014.html
•https://www.mkyong.com/java/how-to-execute-shell-command-from-java/
•https://www.baeldung.com/run-shell-command-in-java
To split a string into tokens, and to reverse a string see:
• https://www.javatpoint.com/how-to-reverse-string-in-java
• https://www.javatpoint.com/string-tokenizer-in-java

http://localhost:8000/process
http://www.rgagnon.com/javadetails/java-0014.html
https://www.mkyong.com/java/how-to-execute-shell-command-from-java/
https://www.baeldung.com/run-shell-command-in-java
https://www.javatpoint.com/how-to-reverse-string-in-java
https://www.javatpoint.com/string-tokenizer-in-java

Assignment 1 – part 2
Install and run an Apache WebServer

Create a script that launches the java program defined in part 1.

Suggestion:
- write a .sh or a .bat (depending on what platform you're on) that:

- retrieves the parameters
- launches the java program "prog" as

java prog params

Delivery
Deliver the (zipped) IntelliJ project of Part 1

Deliver a report using the following structure:
Title Page containing date, title, your name
For each of the two parts:

Section x:
x.1 Introduction (problem statement, description of the domain)
x.2 Short description of what you did
x.3 screen shots of your app running, documenting the various steps
x.4 Comments and notes (optional: any problems encountered during project

development, any other comment)
References (if any)

Delivery has to be done by Oct.3, 23:59 on
https://didatticaonline.unitn.it/dol/mod/publication/view.php?id=997920

https://didatticaonline.unitn.it/dol/mod/publication/view.php?id=997920

Q
What is the HTTP state problem?

5

HTTP is stateless
How can we keep track of who is who, and

which state of the process s/he is at?

There is no way of doing it server-side…

The state problem: part 1

In
te
rn
et

Client

1

Server

+CGI

ht
tp
d

Data User 1

Data User 2

Data User 3

Client

3

Client

2

Who is talking to me?

The state problem: part 2

In
te
rn
et

Client

1

Server

+CGI

ht
tp
d

Data User 1

Data User 2

Data User 3

Client

2

What is this guy’s state?

Client

3

The state problem: part 2 - example

In
te
rn
et

Server

+CGI

ht
tp
d

Data User 1

Data User 2

Data User 3

Client

2

What is this guy’s state?

The state problem: part 2 - example

In
te
rn
et

Server

+CGI

ht
tp
d

Data User 1

Data User 2

Data User 3

Client

2

What is this guy’s state?

Q
What are cookies ?
How do they solve the state problem?

11

The state problem: solution 1

In
te
rn
et

Server

ht
tp
d

Data User 2

Client

2

Cookie

State

State

Data User 1

Data User 3

+Servlet

The state problem: solution 2

In
te
rn
et

Server

+Servletht
tp
d

Data User 2

Client

2

Cookie
Identity

Data User 1

Data User 3

{Identity, State}

+Servlet

Keeping the state by using cookies
User ID State (Map)

User 1

User 2

User 3

Key Value

name Object 1

address Object 2

cart Object 3

Key Value

name Object 1

address Object 2

cart Object 3

Key Value

name Object 1

address Object 2

cart Object 3

The idea:

cookie1

cookie2

cookie3 M
EM

O
RY

Cookies:
A Cookie is a small amount of information sent by a servlet to a

Web browser, saved by the browser, and later sent back to the
server.

A cookie's value can uniquely identify a client, so cookies are
commonly used for session management.

A cookie has a name, a single value, and optional attributes such
as a comment, path and domain qualifiers, a maximum age, and
a version number.

Cookies
§ The servlet sends cookies to the browser by using

the HttpServletResponse.addCookie(javax.servlet.ht
tp.Cookie) method, which adds fields to HTTP
response headers to send cookies to the browser,
one at a time. The browser is expected to support 20
cookies for each Web server, 300 cookies total, and
may limit cookie size to 4 KB each.

§The browser returns cookies to the servlet by adding
fields to HTTP request headers. Cookies can be
retrieved from a request by using
the HttpServletRequest.getCookies() method.

Q
Which operations can we perform
on cookies ?

17

main operations on cookies
String getName() / void setName(String s)

String getValue() / void setValue(String s)

boolean getSecure / setSecure(boolean b) (encript the cookie)

int getMaxAge() / void setMaxAge(int i) (Positive: seconds to live.
Zero: delete cookie. Negative: only as long as browser quits.

Control cookie scope: Normally, cookies are returned only to the
exact hostname that sent them.
§String getDomain() / setDomain(String s):
§ instruct the browser to return them to other hosts within the
same domain.
§String getPath() / void setPath(String s)
§ restrict the path of URL which can obtain the cookie

Placing Cookies in the Response Headers

The cookie is added to the Set-Cookie response header by
means of the addCookie method of HttpServletResponse.
Here's an example:

Cookie userCookie = new Cookie("user",
"uid1234");

response.addCookie(userCookie);

// before opening the body of response!

// i.e. before any out.print

Reading Cookies from the Client

§To read the cookies that come back from the client, you call
getCookies on the HttpServletRequest. This returns an array of
Cookie objects corresponding to the values that came in on the
Cookie HTTP request header.

§Once you have this array, you typically loop down it, calling
getName on each Cookie until you find one matching the name
you have in mind. You then call getValue on the matching
Cookie, doing some processing specific to the resultant value.

Cookies

Demo: Cookies in action

21

Output

22

5 times

2 times

SafariChrome

Cookies in action - outline

23

Do you have a request
with a "name" parameter?

prepare a msg
showing the state
Prepare a cookie

and send it

Do you have a cookie ?

Is the cookie valid? Update the state
and the relative cookie,

prepare a msg
showing the state

Prepare an
error message

YES

YES

NO

NO

NO

Write the page
with the responses,

Including
the messagge

Cookies in action - 1

24

Cookies in action - 2

25

Cookies in action - 3

26

package it.unitn.disi.ronchet.myservlets;

import …

@WebServlet(urlPatterns = {"/welcome"})
public class Welcome extends HttpServlet {

String msg;
boolean isInitialIteration ;

private void dealWithInvalidCookie() {
msg = "Sorry, we do not know each other...
"

+ "Please introduce yourself.
";
isInitialIteration = true;

}

Cookies in action - 4

27

protected void doGet(HttpServletRequest request,
` HttpServletResponse response)

throws ServletException, IOException {
isInitialIteration=false;
// manage params and cookies
String name = request.getParameter("name");
if (name != null && ! name.equals("")) {

// there is the right parameter,
// no need to read cookie, but we set them
log("name != null && ! name.equals(\"\")");
Cookie cookie = new Cookie("name", name);
msg = "Hi " + name + ", nice to meet you!";
response.addCookie(cookie); // identity
Cookie cookie1 = new Cookie("counter", "0");
response.addCookie(cookie1); // state
// finished! Go to end

} else {

Cookies in action - 5

28

//} else {
// no parameter, let's try with cookies
Cookie cookies[] = request.getCookies();
if (cookies==null || cookies.length == 0) {

// no cookies
log(”no cookies found");
dealWithInvalidCookie();

} else {
Cookie n_Cookie=null; // cookie con il nome
Cookie c_Cookie=null; // cookie con il contatore
for (Cookie c:cookies) {

String cookieName = c.getName();
if (cookieName.equals("name")) {

n_Cookie=c;
} else if (cookieName.equals("counter")) {

c_Cookie=c;
}

}
if (n_Cookie==null) {

log ("valid cookies not found");
// invalid cookie
dealWithInvalidCookie();

} else {

Cookies in action - 6

29

} else {
// ok, the cookie is good!
String userName=n_Cookie.getValue();
String counterAsString=c_Cookie.getValue();
log ("name == "+userName);
// let's update the counter, and the cookie
int counter=Integer.valueOf(counterAsString)+1;
c_Cookie.setValue(""+counter);
response.addCookie(c_Cookie);
msg = "Hi " + userName + ", welcome back! (”

+counter+")";}
}

}

Cookies in action - 7

30

// prepare response and send it
response.setContentType("text/html;charset=UTF-8");
try (PrintWriter out = response.getWriter()) {

out.println("<!DOCTYPE html>");
out.println("<html><body>");
out.println(msg);
if (isInitialIteration) {

request.getRequestDispatcher(
"WhatsYourNameFragment.html")

.include(request, response);
} else {

request.getRequestDispatcher(
"DeleteCookiesFragment.html")

.include(request, response);
}
out.println("</body></html>");

}

}

Cookies in action – 8 - deleteCookies

31

@WebServlet(name = "DeleteCookies",
urlPatterns = {"/deleteCookies"})

public class DeleteCookies extends HttpServlet {

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

Cookie cookies[]=request.getCookies();
if (cookies != null) {

for (Cookie c : cookies) {
c.setMaxAge(0);
response.addCookie(c);

}
}
response.setContentType("text/html;charset=UTF-8");
request.getRequestDispatcher(

"CookiesHaveBeenDeleted.html")
.include(request, response);

}
}

Disallowing cookies

Output

33

5 times

2 times

SafariChrome

No COOKIES

Q
What are sessions ?

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento34

Session concept

§To support applications that need to maintain
state, Java Servlet technology provides an API for
managing sessions and allows several
mechanisms for implementing sessions.

§Sessions are represented by
an HttpSession object.

35

Session tracking using cookies
User ID State (Map)

User 1

User 2

User 3

Key Value

name Object 1

address Object 2

cart Object 3

Key Value

name Object 1

address Object 2

cart Object 3

Key Value

name Object 1

address Object 2

cart Object 3

The idea:

cookie1

cookie2

cookie3 M
EM

O
RY

Session tracking
§ To associate a session with a user, a web container can

use several methods, all of which involve passing an
identifier between the client and the server. The
identifier can be

§maintained on the client as a cookie, or
§ the web component can include the identifier in every

URL that is returned to the client. See URL rewriting
later)

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento37

Session

Java HttpSession

38

Accessing Session

§You access an HttpSession object by calling
the getSession method of a request object.

§This method returns the current session
associated with this request; or, if the request
does not have a session, this method creates
one.

39

Associating objects with Session

You can associate object-valued attributes with an
HttpSession by name.

Such attributes are accessible by any web
component that belongs to the same web
context and is handling a request that is part of
the same session.

40

HttpSession methods: attributes

§ public Enumeration getAttributeNames()
§ Returns an Enumeration of String objects containing the names of

all the objects bound to this session.
§ public Object getAttribute(String name)

§ Returns the object bound with the specified name in this session,
or null if no object is bound under the name.

§ public void setAttribute(String name, Object value)
§ Binds an object to this session, using the name specified. If an

object of the same name is already bound to the session, the object
is replaced.

§ public void removeAttribute(String name)
§ Removes the object bound with the specified name from this

session. If the session does not have an object bound with the
specified name, this method does nothing.

41

Session lifecycle

§ A session consumes resources (memory), hence it has to
be managed. Since http is stateless, there is no notion of
“log out”.

§ The way of solving the problem, is to decide an expiry
time for sessions (timeout)

42

HttpSession methods: timing
§ public long getCreationTime()

§ Returns the time when this session was created, measured in
milliseconds since midnight January 1, 1970 GMT.

§ public long getLastAccessedTime()
§ Returns the last time the client sent a request associated with this

session, as the number of milliseconds since midnight January 1,
1970 GMT, and marked by the time the container received the
request.

§ public void setMaxInactiveInterval(int interval)
§ Specifies the time, in seconds, between client requests before the

servlet container will invalidate this session. A negative time
indicates the session should never timeout.

§ public int getMaxInactiveInterval()
§ Returns the maximum time interval, in seconds, that the servlet

container will keep this session open between client accesses. After
this interval, the servlet container will invalidate the session.

43

Setting Session global Timeout
To set the timeout period in the deployment descriptor using NetBeans
IDE, follow these steps.
§ Expand the node of your project in the Projects tab.
§ Expand the Web Pages and WEB-INF nodes that are under the project

node.
§ If WebInf is empty, select it and right-click new->other->Standard

Deployment Descriptor
§ Double-click web.xml
§ If not present, add
<session-config>

<session-timeout>
30

</session-timeout>
</session-config>

(30 is the number of minuts after which the session will expire)

44

web.xml
Java web applications use a deployment descriptor file
named web.xml to determine many things, such as how
URLs map to servlets, which URLs require authentication,
etc..
web.xml resides in the app's WAR under the WEB-
INF/ directory.
See
https://cloud.google.com/appengine/docs/standard/java/
config/webxml

45

https://cloud.google.com/appengine/docs/standard/java/config/webxml

Why did we not use web.xml so far?
Some of the info expected in the web.xml can be provided via annotation. E.g.
package it.unitn.disi.ronchet.myservlets;

@WebServlet(name=”myServlet”,

urlPatterns = {"/welcome"})

public class Welcome extends HttpServlet

Is equivalent to
</web-app>

<servlet>

<servlet-name>myServlet</servlet-name>

<servlet-class>it.unitn.disi.ronchet.myservlets.Welcome

</servlet-class>
</servlet>
<servlet-mapping

<servlet-name>myServlet</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

</web-app>

46

web.xml and annotations together

Whatever is defined in web.xml
overwrites annotations.

Try it!

Redefine the URL via web.xml, and see who wins between
annotation and configuration.

47

HttpSession methods: other

§ public java.lang.String getId()
§ Returns a string containing the unique identifier assigned to this

session. The identifier is assigned by the servlet container and is
implementation dependent.

§ public boolean isNew()
§ Returns true if the client does not yet know about the session or if

the client chooses not to join the session (e.g., if client had disabled
the use of cookies).

§ public void invalidate()
§ Invalidates this session then unbinds any objects bound to it.

48

Session tracking

§ If your application uses session objects, you must ensure
that session tracking is enabled by having the
application rewrite URLs whenever the client turns off
cookies.

§ You do this by calling the response's encodeURL(URL) method on
all URLs returned by a servlet.

§ This method includes the session ID in the URL only if cookies are
disabled; otherwise, the method returns the URL unchanged.

49

Session

Demo

50

51

Output

Session in action - 1

52

package it.unitn.disi.ronchet.myservlets;

import …

@WebServlet(urlPatterns = {"/DemoSession"})
public class DemoSession extends HttpServlet {

PrintWriter out=null;
private void p(String s) {

out.println(s);
}

Session in action - 2

53

@Override
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException {

out = response.getWriter();

// Return the existing session if there is one.
// Create a new session otherwise.
HttpSession session = request.getSession();
Integer accessCount;
synchronized(session) {

accessCount =
(Integer)session.getAttribute("accessCount");

if (accessCount == null) {
accessCount = 0; // autobox int to Integer

} else {
accessCount = new Integer(accessCount + 1);

}
session.setAttribute("accessCount", accessCount);

}

Session in action - 3

54

try {
response.setContentType("text/html;charset=UTF-8");
p("<!DOCTYPE html>"

+"<html>"
+"<head><title>Session Test Servlet</title></head><body>");

p("Session is new? "+session.isNew());
p("<h2>You accessed this site " + accessCount

+ " times in this session.</h2>");
p("Your session ID is " + session.getId() + "");
p("Session creation time is " +

new Date(session.getCreationTime()) + "");
p("Session last access time is " +

new Date(session.getLastAccessedTime()) + "");
p("Session max inactive interval is " +

session.getMaxInactiveInterval() + " seconds)");

Session in action - 4

55

p("<p><a href='" + request.getRequestURI()
+ "'>Refresh");

p("<p><a href=‘”
+ response.encodeURL(request.getRequestURI())
+ "'>Refresh with URL rewriting\n");

p("<form method=\"GET\" action=\"endSession\">\n"
+"<input type=\"submit\" value=\"End Session\">\n"
+"</form>");

p("</body></html>");
} finally {

out.close(); // Always close the output writer
}
} // end DoGet

Without cookies…

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento56

Session in action – 5 - endSession

57

package it.unitn.disi.ronchet.webProg;

import …

@WebServlet(name = "endSession", urlPatterns = {"/endSession"})
public class DeleteSession extends HttpServlet {

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

HttpSession s= request.getSession();
s.invalidate();
response.setContentType("text/html;charset=UTF-8");
request.getRequestDispatcher("SessionHasBeenDeleted.html")

.include(request, response);

}
}

Session in action – 6 -
SessionHasBeenDeleted.html

58

<!DOCTYPE html>
<html>

<head>
<title>Session has been deleted</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width,

initial-scale=1.0">
</head>
<body>

All cookies have been deleted

Go to the

initial page.
</body>

</html>

Session in action – 7 – web.xml

59

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
version="3.1">

<welcome-file-list>
<welcome-file>DemoSession</welcome-file>

</welcome-file-list>
<session-config>

<session-timeout>
30

</session-timeout>
</session-config>

</web-app>

Session

Final notes

60

Advanced: associating events with
session objects
§ Your application can notify web context and session listener

objects of servlet lifecycle events (Handling Servlet Lifecycle
Events). You can also notify objects of certain events related to
their association with a session, such as the following:
§ When the object is added to or removed from a session. To receive

this notification, your object must implement the
javax.servlet.http.HttpSessionBindingListener interface.

§ When the session to which the object is attached will be passivated
or activated. A session will be passivated or activated when it is
moved between virtual machines or saved to and restored from
persistent storage. To receive this notification, your object must
implement the
javax.servlet.http.HttpSessionActivationListener interface.

61

https://docs.oracle.com/javaee/7/tutorial/servlets002.htm

Readings

62

https://www.tutorialspoint.com/servlets/index.htm

Stop here!

https://www.tutorialspoint.com/servlets/index.htm

ServletContext

63

Associating objects with the
WebApp
ServletContext context = request.getSession().getServletContext();

context.setAttribute("someValue", "aValue");

Object attribute = context.getAttribute("someValue");

§ The attributes stored in the ServletContext are available to all servlets in
your application, and between requests and sessions. That means, that
the attributes are available to all visitors of the web application. Session
attributes are just available to a single user.

§ The ServletContext attributes are still stored in the memory of the
servlet container. That means that the same problems exists as does
with the session attributes, in server clusters.

64 from http://tutorials.jenkov.com/java-servlets/servletcontext.html

