
Q
What do we mean by safe and idempotent methods?

Or: are POST and GET equivalent ?

1

idempotent methods
https://developer.mozilla.org/en-US/docs/Glossary/idempotent

An HTTP method is idempotent if an identical request can be made once or
several times in a row with the same effect while leaving the server in the same
state.

An idempotent method should not have any side-effects (except for keeping
statistics).

Implemented correctly, the GET, HEAD, PUT, and DELETE method are idempotent,
but the POST method in not.

2

https://developer.mozilla.org/en-US/docs/Glossary/idempotent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/HEAD
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PUT
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/DELETE
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

safe methods

https://developer.mozilla.org/en-US/docs/Glossary/safe

An HTTP method is safe if it doesn't alter the state of the server.
A method is safe if it leads to a read-only operation.
Several common HTTP methods are safe: GET, HEAD, or OPTIONS.
All safe methods are also idempotent, but not all idempotent
methods are safe.
For example, PUT and DELETE are both idempotent but unsafe.

3

https://developer.mozilla.org/en-US/docs/Glossary/safe
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/HEAD
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/OPTIONS
https://developer.mozilla.org/en-US/docs/Glossary/idempotent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PUT
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/DELETE

Safe, unsafe and idempotent
methods
§ GET /pageX HTTP/1.1 is idempotent. Called several times in a row, the client

gets the same results:
§ GET /pageX HTTP/1.1
§ GET /pageX HTTP/1.1
§ GET /pageX HTTP/1.1

§ POST /add_row HTTP/1.1 is not idempotent; if it is called several times, it adds
several rows:
§ POST /add_row HTTP/1.1
§ POST /add_row HTTP/1.1 -> Adds a 2nd row
§ POST /add_row HTTP/1.1 -> Adds a 3rd row

§ DELETE /idX/delete HTTP/1.1 is idempotent, even if the returned status code
may change between requests:
§ DELETE /idX/delete HTTP/1.1 -> Returns 200 if idX exists
§ DELETE /idX/delete HTTP/1.1 -> Returns 404 as it just got deleted
§ DELETE /idX/delete HTTP/1.1 -> Returns 404

4

Q
What is Aspect Oriented
Programming?

5

AOP

Aspect-oriented programming (AOP) attempts to aid
programmers in the separation of concerns, specifically
cross-cutting concerns, as an advance in modularization.

Logging and authorization offer two examples of
crosscutting concerns:

a logging strategy necessarily affects every single logged
part of the system. Logging thereby crosscuts all logged
classes and methods.

Same is true for authorization.

Q
What are Filters?

7

ServletContext

8

Client1 WebApp

Client2

Servlet1

Servlet2

JSP3

HTML page

Request 1

Filter

Filters (javax.servlet.filter)
Classes that preprocess/postprocess request/response

A filter is an object that performs filtering tasks on either the
• request to a resource (a servlet or static content),
• the response from a resource.

Filters perform filtering in the doFilter method. Every Filter has
access to a FilterConfig object from which it can obtain its
initialization parameters and a reference to the ServletContext.

They provide the ability to encapsulate recurring tasks in reusable
units.

Filters (javax.servlet.filter)

Filters are configured:
• in the deployment descriptor of a web application
• via annotation (See

https://docs.oracle.com/javaee/7/api/javax/servlet/annotation/WebFilter.html)

https://docs.oracle.com/javaee/7/api/javax/servlet/annotation/WebFilter.html

Filters
Filters can perform many different types of functions:

* Authentication -> Blocking requests based on user identity
* Logging and auditing -> Tracking users of a web application
* Image conversion -> Scaling maps, and so on.
* Data compression ->Making downloads smaller.
* Localization -> Targeting the request and response to a particular locale.
* XSL/T -> transformations of XML content-Targeting web application
responses to more that one type of client.

There are many more applications of filters, such as encryption,
tokenizing, triggering resource access events, mime-type chaining,
and caching.

Filters
The filtering API is defined by the Filter, FilterChain, and
FilterConfig interfaces in the javax.servlet package.

You define a filter by implementing the Filter interface:
its most important method in this interface is doFilter, which hasas

parameters request, response, and filter chain objects. It perform
the e.g. following actions:

1. Examine the request headers.
2. Customize the request object and response objects if needed
3. Invoke the next entity in the filter chain (as configured in the

web.xml) by calling the doFilter method on the chain object
(passing in the request and response it was called with, or the
wrapped versions it may have created).

Filters methods (javax.servlet.filter)

• public void doFilter (ServletRequest, ServletResponse, FilterChain)
• This method is called by the container each time a request/response pair is

passed through the chain due to a client request for a resource at the end of
the chain.

• public void init(FilterConfig filterConfig)
• This method is called by the web container to indicate to a filter that it is being

placed into service.

• public void destroy()
• This method is called by the web container to indicate to a filter that it is being

taken out of service.

Filter example
import javax.servlet.*; import javax.servlet.http.*;

import java.io.*;

public class LoginFilter implements Filter {
protected FilterConfig filterConfig;
public void init(FilterConfig filterConfig) throws

ServletException{this.filterConfig =filterConfig; }
public void destroy() {this.filterConfig = null; }
public void doFilter(ServletRequest req,ServletResponse res,

FilterChain chain) throws java.io.IOException, ServletException {

HttpServletRequest hreq=(ServletRequest)req;

String username = hreq.getParameter("j_username");

if (isUserOk(username)) chain.doFilter(request,response);

res.sendError(

javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);
}

}

Configuration
<filter id="Filter_1">

<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login

operation</description>
</filter-id>

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Filters Application Order

The order of filter-mapping elements in web.xml determines the
order in which the web container applies the filter to the servlet.

Filter sequencing example
<filter>
<filter-name>Uncompress</filter-name>
<filter-class>compressFilters.createUncompress</filter-
class>
</filter>
<filter>
<filter-name>Authenticate</filter-name>
<filter-class>authentication.createAuthenticate</filter-
class>
</filter>
<filter-mapping>
<filter-name>Uncompress</filter-name>
<url-pattern>/status/compressed/*</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-name>Authenticate</filter-name>
<url-pattern>/status/compressed/*</url-pattern>
</filter-mapping>

Both Uncompress and Authenticate appear on the filter chain for servlets
located at /status/compressed/*.
The Uncompress filter precedes the Authenticate filter in the chain because
the Uncompress filter appears before the Authenticate filter in the web.xml
file.

Example: Filters and sessions
public void doFilter(ServletRequest req,
ServletResponse res, FilterChain chain) throws java.io.IOException,

ServletException {
HttpServletRequest hreq=(HttpServletRequest) req;

HttpSession session = hreq.getSession(false);

if (null == session |

!(Boolean)session.getAttribute("auth")) {
if (isUserOk(hreq.getParameter("user")){
session=hreq.getSession(true);
session.setAttribute("auth",new Boolean(true));
} else res.sendError(

javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);

}

chain.doFilter(request, response);
}
private boolean isUserOk(String name) {…}

Example: Filters and parameters
java.util.ArrayList userList=null;
public void init(FilterConfig fc) throws ServletException {
this.filterConfig = fc;
BufferedReader in;
userList = new java.util.ArrayList();
if (fc != null) {

try {
String filename = fc.getInitParameter("Users");
in = new BufferedReader(new FileReader(filename));

} catch (FileNotFoundException fnfe) {
writeErrorMessage(fnfe); return;

}
String userName;
try {
while ((userName = in.readLine()) != null)
userList.add(userName);

} catch (IOException ioe) {writeErrorMessage(ioe);return;}
}

}
public void destroy() { this.filterConfig = null; userList = null;}

Filters and parameters
<filter id="Filter_1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login

operation</description>
<init-param>
<param-name>Users</param-name>
<param-value>c:\mydir\Users.lst</param-value>

</init-param>
</filter>

public void log(String msg) {

filterConfig.getServletContext().log(msg);

}

21

Logging
in filters

Furtherexamples

http://www.oracle.com/technetwork/java/filters-137243.html

https://www.tutorialspoint.com/servlets/servlets-writing-filters.htm

http://www.oracle.com/technetwork/java/filters-137243.html
https://www.tutorialspoint.com/servlets/servlets-writing-filters.htm

A
2nd Assignment

23

See web site of the course

Q
Where do we go from here ?

Let's follow the historical evolution of the web paradigm

24

History of the web
§ 1989-1990 – Tim Berners-Lee invents World Wide Web at CERN.

§ On 30 April 1993, CERN put the World Wide Web software in the public
domain. Later, CERN made a release available with an open license, a
more sure way to maximize its dissemination.

§ TB-L moved from CERN to the Massachusetts Institute of Technology in
1994 to found the World Wide Web Consortium (W3C), an
international community devoted to developing open web standards.

25

ht
tp

d

The original web architecture: static pages

In
ter

ne
t

HTTP Get

Client

Browser Server

File System

Initial idea: get (static) interlinked documents

The web programmer writes
collections of HTML pages

ht
tp

d

The original web architecture: dynamic pages

In
ter

ne
t

HTTP Get + params

Cgi-bin

pr
oc

es
s

Client

Browser Server

File System

Evolution 1: dynamically create (interlinked) documents

The web programmer also writes
programs, using the programming
language of her/his choice.

ht
tp

d

The original web architecture: dynamic pages with DB

In
ter

ne
t

Cgi-bin
Query SQL

pr
oc

es
s

DB

Data
Client

Browser Server

File System

HTTP Get + params

Evolution 2: dynamically create (interlinked) documents
interacting with a persistent data storage

The programs also need to interact
with a (legacy?) database.

ht
tp

d

The original web architecture: dynamic pages with DB

In
ter

ne
t

Cgi-bin
Query SQL

pr
oc

es
s

DB

Data
Client

Browser Server

File System

HTTP Get + params

We need to focus on this area

The programs also need to interact
with a (legacy?) database.

ht
tp

d

The web architecture with smart browser

In
ter

ne
t

Cgi-bin
Query SQL

pr
oc

es
s

DB

Data
Client

Server

File System
Smart
browser

HTTP Get + params

Evolution 3: execute code also on client! (How ?)

The web programmer also writes
Programs which run on the browser.
Which language?

ht
tp

d

The web architecture: plug in

In
ter

ne
t

Cgi-bin
Query SQL

pr
oc

es
s

DB

Data
Client

Browser
+ PlugIn Server

File System

HTTP Get (+ params)

Evolution 4: augment browser with an ad-hoc engine
to be able to execute a (proprietary) language

move presentation responsibility
to the client

Plug in: Adobe Flash
(former Micromedia Flash)

FLV-Video-Media-Content played by the Adobe Flash OCX Plugin.

32

Plug in: Silverlight

33

Flash and Silverlight decline

34

April 2010: Steve Jobs “Thoughts on Flash”

ht
tp

d

The web architecture: Ajax and SPA

In
ter

ne
t

Cgi-bin
Query SQL

pr
oc

es
s

DB

Data
Client

Browser
+ PlugIn Server

File System

HTTP Get (+ params)

Evolution 5: deliver data to single page applications

move presentation responsibility
to the client

Q
How can we optimize traffic ?
1: Proxies

36

Web caches (proxy server)

Goal: satisfy client request
without involving origin server
§ user sets browser: Web

accesses via cache
§ browser sends all HTTP

requests to cache
§ object in cache: cache returns

object
§ else cache requests object

from origin server, then
returns object to client

37

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

More about Web caching

§ cache acts as both client and
server
§ server for original requesting

client
§ client to origin server

§ typically cache is installed by
ISP (university, company,
residential ISP)

why Web caching?
§ reduce response time for

client request
§ reduce traffic on an

institution’s access link
§ Internet dense with caches:

enables “poor” content
providers to effectively
deliver content (so too does
P2P file sharing)

38

Conditional GET

§ Goal: don’t send object if
cache has up-to-date cached
version
§ no object transmission delay
§ lower link utilization

§ cache: specify date of cached
copy in HTTP request
§ If-modified-since: <date>

§ server: response contains no
object if cached copy is up-to-
date:
§ HTTP/1.0 304 Not Modified

39

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Q
How can we optimize traffic ?
2: Video streaming and CDNs

40

Video Streaming and CDNs: context

§ video traffic: major consumer of Internet bandwidth
§ Netflix, YouTube: 37%, 16% of downstream residential ISP traffic
§ ~1B YouTube users, ~75M Netflix users

§ challenge: scale - how to reach ~1B users?
§ single mega-video server won’t work (why?)

§ challenge: heterogeneity
§ different users have different capabilities (e.g., wired versus mobile;

bandwidth rich versus bandwidth poor)

§ solution: distributed, application-level infrastructure

41

Multimedia: video

§ video: sequence of images
displayed at constant rate
§ e.g., 24 images/sec

§ digital image: array of pixels
§ each pixel represented by

bits
§ coding: use redundancy within

and between images to
decrease # bits used to
encode image
§ spatial (within image)
§ temporal (from one image to

next)

42

……………………..

spatial coding example: instead of
sending N values of same color (all
purple), send only two values: color
value (purple) and number of
repeated values (N)

frame i

frame i+1

temporal coding example:
instead of sending complete
frame at i+1, send only
differences from frame i

……………….…….

Streaming stored video

§ Simple scenario:

43

video server
(stored video)

client

Internet

Streaming multimedia: DASH

DASH: Dynamic, Adaptive Streaming over HTTP
§ server:

§ divides video file into multiple chunks
§ each chunk stored, encoded at different rates
§ manifest file: provides URLs for different chunks

§ client:
§ periodically measures server-to-client bandwidth
§ consulting manifest, requests one chunk at a time

§ chooses maximum coding rate sustainable given current bandwidth
§ can choose different coding rates at different points in time

(depending on available bandwidth at time)

44

Streaming multimedia: DASH

DASH: Dynamic, Adaptive Streaming over HTTP
§ “intelligence” at client: client determines

§ when to request chunk (so that buffer starvation, or overflow does
not occur)

§ what encoding rate to request (higher quality when more
bandwidth available)

§ where to request chunk (can request from URL server that is “close”
to client or has high available bandwidth)

45

Content distribution networks

§ challenge: how to stream content (selected from
millions of videos) to hundreds of thousands of
simultaneous users?

§ option 1: single, large “mega-server”
§ single point of failure
§ point of network congestion
§ long path to distant clients
§ multiple copies of video sent over outgoing link

§ quite simply: this solution doesn’t scale

46

Content distribution networks

§ challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

§ option 2: store/serve multiple copies of videos at multiple
geographically distributed sites (CDN)
§ enter deep: push CDN servers deep into many access networks

§ close to users
§ used by Akamai, 1700 locations

§ bring home: smaller number (10’s) of larger clusters in POPs near (but not
within) access networks

§ used by Limelight

47

Content Distribution Networks
(CDNs)
§ CDN: stores copies of content at CDN nodes

§ e.g. Netflix stores copies of MadMen

§ subscriber requests content from CDN
• directed to nearby copy, retrieves content
• may choose different copy if network path congested

48

…

…

……

…

…

where’s Madmen?
manifest file

