
Q
Can JavaScript be made less
rubbish?

1

JS strict mode
Errors are generated for

• any assignment to:
• a non-writable property,

• a getter-only property,

• a non-existing property,

• a non-existing variable,

• a non-existing object.

• any deletion of variable, function or undeletable property (e.g. delete Object.prototype;)

• usage of forbidden words (eval, arguments, implements, interface, let, package, private,

protected, public, static, yield)

• duplication of parameters (e.g. f(p,p));

• usage of with operator

2
see https://www.w3schools.com/js/js_strict.asp

The "use strict" directive is only
recognized at the beginning of
a script or a function.
In a function it has local scope.

https://www.w3schools.com/js/js_strict.asp

Polyfilling and transpiling
v Polyfiling is one of the methodologies that can be used as a

sort of backward compatibility measurement.
v “A polyfill, or polyfiller, is a piece of code (or plugin) that

provides the technology that you, the developer, expect the
browser to provide natively. (Remy Sharp).”

v a “Transpiler” is a tool that transforms code with newer
syntax into older code equivalents. This process is called
“Transpiling”.

3

Making life
easier

with Typescript

4
(Some slides adapted from LifeMichael.com)

See also https://www.typescriptlang.org/docs/handbook/

https://www.typescriptlang.org/docs/handbook/

TypeScript

v The TypeScript programming language was developed by
Microsoft. It is an open source programming language.

v The code we write in TypeScript is compiled into
JavaScript (transpiled)

v TypeScript gives us the capabilities, which are required to
develop large scale applications using JavaScript.

5

TypeScript
vTypeScript is a superset of JavaScript. It

includes the entire JavaScript programming
language together with additional capabilities.

vTypeScript allows us to use JavaScript as if it
was a strictly type programming language.
v TypeScript allows us to specify the type of the

variables.
v TypeScript allows us to define classes and

interfaces.

6

TypeScript
vIn general, nearly every code we can write in

JavaScript can be included in code we write in

TypeScript.

vCompiling TypeScript into JavaScript we get a

clean simple ES3 compliant code we can run in

any web browser

7

The TypeScript playground

8

EcmaScript 2017

https://www.typescriptlang.org/play/

https://www.typescriptlang.org/play/

Configuring TypeScript playground

9

Configuring TypeScript playground

10

ES 3

Configuring TypeScript playground

11

Variable typing
We define the type of the variables:

name:type

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento12

var id:number = 221255;
var aname:string = "Dorothea";
var tall:boolean = true;
var names:string[] = ['pippo','pluto','minnie'];

Function typing
We define the type of the variables:

name:type

13

Number of params
vUnlike JavaScript, when calling a function passing

over arguments the number of arguments must

match the number of the parameters, otherwise

then we get a compilation error.

14

Result: NaN

Optional params
v Adding the question mark to the name of a parameter will turn

that parameter into an optional one.

v The optional parameters should be after any other required
one. They should be the last ones.

15

function sum(a:number,b:number,c?:number):number
{
var total = 0;
if(c!==undefined) { total += c; }
total += (a+b); return total;
}

var temp = sum(7,8);
document.write("temp="+temp);

Default params
v When defining a function we can specify default values for

any of its parameters. Doing so, if an argument is not
passed over to the parameter then the default value we
specified will be set instead.

16

Rest params
vWe can define a function with an arbitrary number

of params (like the "main" in Java).

17

TypeScript
vWhen starting from standard JavaScript, you might

get some errors due to the differences between
JavaScript and TypeScript.

vFor instance, you get an error if you treat a variable in
our code as if it was a dynamic type variable (as in
JavaScript).

vUnlike other programming languages, when getting
error messages from the TypeScript compiler it will still
try to execute the code.

18

19

treating a variable as if it was
a dynamic type variable

Dynamic type variables
We can create a variable with a dynamic type if we

specify its type to be any.

20

var temp:any = 3;
temp = 'a';
temp = [23,5,23];
temp = true;
temp = new Object();

Classes

21

class Car {
//field
engine:string;

//constructor
constructor(engine:string) {

this.engine = engine
}

//function
disp():void {

console.log("Engine is : "+this.engine)
}

}

Constructor

22

v When we define a new class it automatically has a

constructor, the default one.

v We can define a new constructor. When doing so, the

default one will be deleted.

v There is no constructor polymorfism.

v When we define a new constructor we can specify each

one of its parameters with an access modifier and by

doing so indirectly define those parameters as instance

variables

Access modifiers

23

vThe available access modifiers are private,

public and protected. The public access

modifier is the default one. If we don't specify an

access modifier then it is public.

Instance vars and methods

24

v The variables are usually declared before the constructor. Each

variable definition includes three parts. The optional access

modifier, the identifier and the type annotation.

v The methods are declared without using the function keyword.

We can precede the function name with an access modifier

and we can append the function declaration with the type of its

returned value.

Instance vars and methods

25

class Rectangle
{

private width:number;
private height:number;
constructor(width:number,height:number)
{

this.width = width;
this.height = height;

}

protected area():number
{

return this.width*this.height;
}

}

Static vars and methods

26

v We can define static variables and static methods by

adding the static keyword. Accessing static

variables and methods is done using the name of the

class.

Static vars and methods

27

class FinanceUtils
{

public static VAT = 0.18;
public static calculateVAT(sum:number):number
{

return FinanceUtils.VAT*sum;
}

}

var price:number = 1020;
document.write("
"+FinanceUtils.calculateVAT(price));

Class inheritance

28

class Shape {
Area:number

constructor(a:number) {
this.Area = a

}
}

class Circle extends Shape {
disp():void {

console.log("Area of the circle: "+this.Area)
}

}

var obj = new Circle(223);
obj.disp()

Type assertion

29

class Person {
id:number;
name:string;

}

class Student extends Person
{
average:number;

}

var a:Person = new Student();
var b:Student = <Student>a;

v Type assertions are a way to

tell the compiler “trust me, I

know what I’m doing.” A type

assertion is like a type cast in

other languages, but

performs no special checking.

It has no runtime impact, and

is used purely by the

compiler.

Generics

30

function identity<T>(arg: T): T { return arg; }

Usages:

explicit form:

let output = identity<string>("myString"); // ^ = let output: string

implicit form:

let output = identity("myString"); // ^ = let output: string

see https://www.typescriptlang.org/docs/handbook/generics.html

https://www.typescriptlang.org/docs/handbook/generics.html

Other class related issues

31

v TypeScript doesn’t support multiple inheritance.

v super()

v Classes implement interfaces
class Student implements Iprintable {…}

The super call must supply all parameters for base class.
The constructor is not inherited.

The next big thing: interfaces

32

v We can use Interfaces as data type definition

v They fully disappear in JavaScript!

interfaces multiple inheritance

33

interface IParent1 {
v1:number

}

interface IParent2 {
v2:number

}

interface Child extends IParent1, IParent2 { }
var Iobj:Child = { v1:12, v2:23}
console.log("value 1: "+this.v1+" value 2: "+this.v2)

duck inheritance

34

class Vehicle {
public run(): void { console.log('Vehicle.run'); }

}

class Task {
public run(): void { console.log('Task.run'); }

}

function runTask(t: Task) {
t.run();

}

runTask(new Task());
runTask(new Vehicle());

Duck Typing

35

v Duck typing in computer programming is an application of

the duck test—"If it walks like a duck and it quacks like a

duck, then it must be a duck"—to determine if an object

can be used for a particular purpose. With normal typing,

suitability is determined by an object's type.

Duck-Typing is a method/rule used to check
the type compatibility for more complex
variable types. TypeScript uses the duck-
typing method to compare one object with
other objects by checking that both objects
have the same type matching names or not.

avoiding duck inheritance - 1

36

class Vehicle {
private x: string="A";
public run(): void { console.log('Vehicle.run'); }

}

class Task {
private x: string="A";
public run(): void { console.log('Task.run'); }

}

function runTask(t: Task) {
t.run();

}

runTask(new Task());
runTask(new Vehicle()); // Will be a compile time error

Argument of type 'Vehicle' is not assignable to parameter of type 'Task'.
Types have separate declarations of a private property 'x'.(2345)

avoiding duck inheritance - 2

37

class Vehicle {
private x: string="A";
public run(): void { console.log('Vehicle.run'); }

}

class Task {
private s: string="A";
public run(): void { console.log('Task.run'); }

}

function runTask(t: Task) {
t.run();

}

runTask(new Task());
runTask(new Vehicle()); // Will be a compile time error

Argument of type 'Vehicle' is not assignable to parameter of type 'Task'.
Property 's' is missing in type 'Vehicle' but required in type 'Task'.(2345)

References for TypeScript

38

• http://www.typescriptlang.org
• https://www.tutorialspoint.com/typescript/index.htm

http://www.typescriptlang.org/
https://www.tutorialspoint.com/typescript/index.htm

