
Q
What is non-blocking I/O, and why 
is it relevant ?

1



I/O

A blocking IO means:
a given thread cannot do anything more until 
the IO is fully received (in the case of sockets 
this wait could be a long time). 

Non-blocking IO means: 
an IO request is queued straight away and 
the function returns. The actual IO is then 
processed at some later point by the kernel



Q
Can JavaScript be used server-side?

3



Server-Side JavaScript
A substitute for CGI.
Server-dependent technology to process the 
Web page before passing it to the client.
An approach which started long ago (Netscape SSJS)

Then mostly forgotten, later revived by Rhino (a bridge 
between JS and Java) and more recently by Node.js



Node.js

an open-source, cross-platform JavaScript engine:
not a framework or a library, but a run-time environment based on Chrome’s 
V8 JavaScript engine for executing JavaScript code server-side.

• event-driven architecture 
• asynchronous I/O

Optimizes throughput and scalability
• in Web applications with many input/output operations, 
• for real-time Web applications 

https://www.w3schools.com/nodejs/default.asp



Node.js

var http = require('http');

http.createServer(
function (req, res) {

res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World!');

}
).listen(8080);

1. The official Node.js website has installation instructions for Node.js:
https://nodejs.org

1. Download and install.

2. Create a file called "node hello.js"

3. execute "node hello.js"

https://nodejs.org/


Node.js: built-in modules
Module Description
cluster To split a single Node process into multiple processes
crypto To handle OpenSSL cryptographic functions
events To handle events
fs To handle the file system
http To make Node.js act as an HTTP server
https To make Node.js act as an HTTPS server.
os Provides information about the operation system
path To handle file paths
querystring To handle URL query strings
timers To execute a function after a given number of milliseconds
url To parse URL strings
util To access utility functions
zlib To compress or decompress files

see https://www.w3schools.com/nodejs/ref_modules.asp for a full list

https://www.w3schools.com/nodejs/ref_cluster.asp
https://www.w3schools.com/nodejs/ref_crypto.asp
https://www.w3schools.com/nodejs/ref_events.asp
https://www.w3schools.com/nodejs/ref_fs.asp
https://www.w3schools.com/nodejs/ref_http.asp
https://www.w3schools.com/nodejs/ref_https.asp
https://www.w3schools.com/nodejs/ref_os.asp
https://www.w3schools.com/nodejs/ref_path.asp
https://www.w3schools.com/nodejs/ref_querystring.asp
https://www.w3schools.com/nodejs/ref_timers.asp
https://www.w3schools.com/nodejs/ref_url.asp
https://www.w3schools.com/nodejs/ref_util.asp
https://www.w3schools.com/nodejs/ref_zlib.asp
https://www.w3schools.com/nodejs/ref_modules.asp


Node.js: modules
Create your own modules – save the following in "myModule.js

exports.myDateTime = function () {
return Date();

};

Use your own modules

var dt = require('./myModule');

Obtain modules from the cloud 

npm install upper-case

Use the obained modules

var dt = require('upper-case');



npm: the good and the ugly

The npm ecosystem is open in nature, allowing anyone to 
submit their packages. 

This includes even those that aren’t open sourced via a 
repository, or those that may bundle backdoors or other 
malicious code. 

With npm spanning more than 1.5 million packages, it isn’t 
an easy task to monitor and catch them all in time, creating 
a lucrative playground for attackers.



Express.js

const express = require('express')
const app = express()
const port = 3000

app.get('/', (req, res) => {
res.send('Hello World!')

})

app.listen(port, () => {
console.log(`Example app listening at http://localhost:${port}`)

})

see https://expressjs.com/en/starter/hello-world.html

Express is a minimal and flexible 
Node.js web application framework 
that provides a robust set of features 
for web and mobile applications.

https://expressjs.com/en/starter/hello-world.html


cookie-session

var cookieSession = require('cookie-session') 
var express = require('express') 
var app = express() 
app.use(

cookieSession(
{ name: 'session', 

keys: [/* secret keys */], 
// Cookie Options 
maxAge: 24 * 60 * 60 * 1000 // 24 hours 

}
)

)

see http://expressjs.com/en/resources/middleware/cookie-session.html

http://expressjs.com/en/resources/middleware/cookie-session.html


Other Node.js-based frameworks



Node.js stories
Nexflix used JavaScript and NodeJS to transform 
their website into a single page application.

Traditionally, Netflix has been an enterprise Java 
shop, but “as we migrated out of the data center to 
the cloud we moved to a more service-based 
architecture,” Trott said.

Java still powers the backend of Netflix, but all the 
stuff that the user sees comes from Node.



The Node.js model PHP

Java

Node

Images by Brad Peabody



Main js frameworks

https://insights.stackoverflow.com/trends

https://insights.stackoverflow.com/trends


Reactive programming

16



Reactive programming
Reactive programming is programming with asynchronous 
data streams.

A stream is a sequence of ongoing events ordered in time. 
It can emit three different things: a value (of some type), an 
error, or a "completed" signal.

image by andrestaltz

https://twitter.com/andrestaltz


Reactive programming
We capture these emitted events asynchronously, by 
defining functions that will execute :
• when a value is emitted, 
• when an error is emitted, 
• when 'completed' is emitted. 

According to the Observer Design Pattern:
• The stream "observable" being observed.
• The "listening" to the stream is called subscribing. 
• The functions we are defining are "observers". 



Reactive programming
In a reactive programming 
environment, you are 
generally given a toolbox of 
functions to combine, create 
and filter any of those 
streams. 



RxJS
RxJS is a library for composing asynchronous and 
event-based programs by using observable 
sequences. 
It provides:
• one core type, the Observable, 
• satellite types (Observer, Schedulers, Subjects) 
• operators (map, filter, reduce, every, etc) to 

allow handling asynchronous events as 
collections.

see https://rxjs-dev.firebaseapp.com/guide/overview

https://rxjs-dev.firebaseapp.com/guide/overview


RxJS - operators

see https://angular.io/guide/rx-library#operators

https://angular.io/guide/rx-library


RxJS
The observable:
• invokes the next() 

callback whenever 
a value arrives in 
the stream. It 
passes the value as 
the argument to 
the next callback. 

• If the error occurs, then the error() callback is invoked. 
• It invokes the complete() callback when the stream 

completes.



RxJS

• next(), 
• error()
• complete()
The observer receives the data from the observer via the 
next() callback
They also receive the errors and completion events via the 
error() & complete() callbacks

Observers subscribe 
to Observables.

Observer registers 
three callbacks with 
the observable at the 
time of subscribing:

All three callbacks are optional.



Vue

A progressive framework.

Go to https://vuejs.org/ and click on Why Vue.js for a short video.

24

https://vuejs.org/

