
Q

How do we define a template?

44

Template
it is a standard HTML file, with binding to the Component and
Angular directives

<tr *ngFor="let customer of customers;">
<td>{{customer.name}}</td>

</tr>

Interpolation:
take a value from
the component,
put it into the template

Component

…
Customer x;
x.name="Pippo"

Angular directives
Structural directives can change the DOM layout by
adding and removing DOM elements.

they are: ngIf, ngFor, ngSwitch

All structural Directives are preceded by Asterix symbol.

Attribute directives or Style directives can change the
appearance or behavior of an element.

they are: ngModel, ngClass, ngStyle

Structural directives in templates: ngIf
export class AppComponent {

showMe: boolean;
}

<p *ngIf="showMe">
ShowMe is checked

</p>

see details and examples in
https://www.tektutorialshub.com/angular/angular-ngif-directive/

in component:

in template:

also:
• ngIf else
• ngIf then else

<div *ngIf="condition; then thenBlock else elseBlock">
This content is not shown

</div>

<ng-template #thenBlock>
content to render when the condition is true.

</ng-template>

<ng-template #elseBlock>
content to render when condition is false.

</ng-template>

https://www.tektutorialshub.com/angular/angular-ngif-directive/

Structural directives in templates: ngSwitch
export class AppComponent {

num: number= 0;
}

<div [ngSwitch]="num">
<div *ngSwitchCase="'1'">One</div>
<div *ngSwitchCase="'2'">Two</div>
<div *ngSwitchCase="'3'">Three</div>
<div *ngSwitchCase="'4'">Four</div>
<div *ngSwitchCase="'5'">Five</div>
<div *ngSwitchDefault>This is Default</div>

</div>

see details and examples in
https://www.tektutorialshub.com/angular/angular-ngswitch-directive/

in component:

in template:

https://www.tektutorialshub.com/angular/angular-ngswitch-directive/

Structural directives in templates: ngFor

define customer, and customers as an array of customer items

<tr *ngFor="let customer of customers;">
<td>{{customer.customerNo}}</td>
<td>{{customer.name}}</td>
<td>{{customer.address}}</td>
<td>{{customer.city}}</td>
<td>{{customer.state}}</td>

</tr>

see details and examples in
https://www.tektutorialshub.com/angular/angular-ngfor-directive/

in component:

in template:

https://www.tektutorialshub.com/angular/angular-ngfor-directive/

Q
How does the class pass values to
the template?

50

interpolation
The simplest form of binding is interpolation (Template
Expression).
Interpolation carries values from the class to the template.
Changes in property values are reflected in the interpolation.
Values must be strings, and are substituted to the interpolation.

See https://www.tektutorialshub.com/angular/interpolation-in-angular/

//Template
{{title}}
{{getTitle()}}

//Component
title = 'Angular Interpolation Example';
getTitle(): string {

return this.title;
}

https://www.tektutorialshub.com/angular/interpolation-in-angular/

interpolation
Interpolation can also evaluate simple expressions, such as e.g.
string concatenation or arithmetic operations. They can bind to
any property that accepts a string.

 {{3*8}}
<p>Show me red</p>
<p style.color={{giveMeRed}}>This is red</p>

Interpolation cannot cause effects in the state of the Component:
no assignments, no instantiation of classes, no side effects.

They are the simplest form of one-way binding:

Component Template

interpolation
Interpolation can be applied also to bind to a value of a property
of an HTML element. We can bind to any property that accepts a
string.

<p>Show me red</p>
<p style.color={{giveMeRed}}>This is red</p>

{{productName}}

https://www.telerik.com/blogs/understanding-angular-property-binding-and-interpolation

property binding
To bind a property of an HTML element there is also a different
syntax, e.g.

<h1 [innerText]="title"></h1>
<button [disabled]="isDisabled">I am disabled</button>

@Component({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']

})
export class AppComponent {

title="Angular Property Binding Example"
isDisabled= true;

}

property binding
interpolation "injects" the value into the html, so when
you say value="{{ hello }}" Angular is inserting your
variable between the brackets. It can only be applied to
strings.

property binding allows Angular to directly access the
elements property in the html. this is a deeper access.
When you say [value]="hello" Angular is grabbing the
value property of the element, and setting your
variable as that property's value.
It can be applied to any data type (e.g. objects).

special cases of property binding: class
Normal html:
<div class="red">red</div>

Property binding:
<div [className]="'red'">Test</div>
<div [className]="'red size20'">Test</div>
<div [ngClass]="'red size20'">
<div ngClass='red size20'>

The ngClass attribute directive is more powerful, you can
use arrays, objects and conditional assigments.

NOTE the double + single quote!

NOTE the single quote only!

see https://www.tektutorialshub.com/angular/angular-ngclass-directive/

and https://www.tektutorialshub.com/angular/property-binding-in-angular/

https://www.tektutorialshub.com/angular/angular-ngclass-directive/
https://www.tektutorialshub.com/angular/property-binding-in-angular/

special cases of property binding: style
Normal html:
<body style="background-color:grey;">

Property binding:
<p [style.background-color]="'grey'">
<p [style.color]="getColor()"

[style.font-size.px]="'20'"
[style.background-color]="status=='error' ? 'red': 'blue'">
paragraph with multiple styles

</p>

.

NOTE the double + single quote!

see https://www.tektutorialshub.com/angular/angular-style-binding/

https://www.tektutorialshub.com/angular/angular-style-binding/

special cases of property binding: ngStyle
The Angular ngStyle directive allows us to set the many
inline style of a HTML element using an expression. The
expression can be evaluated at run time allowing us to
dynamically change the style of our HTML element

<div [ngStyle]="{'color': color}">

for details, see
https://www.tektutorialshub.com/angular/angular-ngstyle-directive/

https://www.tektutorialshub.com/angular/angular-ngstyle-directive/

Q
How does the view pass values to
the class?

59

Event binding
We can bind events such as keystroke, clicks, hover, touch, etc to a
method in component.
It is one way from view to component.

For Example, when the user changes a input in a text box, we can
update the model in the component, run some validations, etc.
When the user submits the button, we can then save the model to
the backend server.

Event binding
DOM Events carries the event payload. I.e the information
about the event. We can access the event payload by
using $event as an argument to the handler function.

<input (input)="handleInput($event)">
<p>You have entered {{value}}</p>

value=""
handleInput(event) {
this.value=event.target.value

;
}

template

component

Event binding - example
@Component({

selector: 'app-root',
templateUrl:

'./app.component.html',
styleUrls:

['./app.component.css']
})
export class AppComponent {

title = 'app works!';
value=""

handleInput(event) {
this.value=event.t

arget.value;
}

}

app.component.ts
<h1>
{{title}}

</h1>
<input
(input)="handleInput($event)"
>
<p>You have entered
{{value}}</p>

app.component.html

Event binding

• (focus)="myMethod()"
• (submit)="myMethod()"
• (cut)="myMethod()"
• (paste)="myMethod()"
• (keypress)="myMethod()"
• (mouseenter)="myMethod()"
• (mouseup)="myMethod()"
• (dblclick)="myMethod()"
• (dragover)="myMethod()"

The events are those of HTML DOM component:
http://www.w3schools.com/jsref/dom_obj_event.asp
by just removing the on prefix. onclick ---> (click)

• (blur)="myMethod()"
• (scroll)="myMethod()"
• (copy)="myMethod()"
• (keydown)="myMethod()"
• (keyup)="myMethod()"
• (mousedown)="myMethod()"
• (click)="myMethod()"
• (drag)="myMethod()"
• (drop)="myMethod()"

https://developer.mozilla.org/en-US/docs/Web/Events
There are actually many more. see:

http://www.w3schools.com/jsref/dom_obj_event.asp
https://developer.mozilla.org/en-US/docs/Web/Events

Event binding
Instead of parentheses, you can also use the on- syntax:

<button on-click="clickMe()">Click Me</button>

for details, see
https://www.tektutorialshub.com/angular/event-binding-in-angular/

https://www.tektutorialshub.com/angular/event-binding-in-angular/

Q
Can we have data passing in the two
directions (view to class/class to view)?

65

two-way binding

1) when you type in the input, value is propagated from
Template to Component (thanks to ngModel)
2) {{value}} is one-way binding from Component to Template
3) a click on the button triggers the call of clearValue(), which
changes value, which is reflected both in <input> (thanks to the
two-way binding of ngModel) and on <p> (thanks to one way
binding given from interpolation).

Template:

<input type="text"
[(ngModel)]="value">
<p> You entered
{{value}}</p>
<button
(click)="clearValue()">
Clear</button>

Component:

value="";
clearValue() {
this.value="";

}

See also https://www.tektutorialshub.com/angular/ngmodel-two-way-data-binding-in-angular/

https://www.tektutorialshub.com/angular/ngmodel-two-way-data-binding-in-angular/

Q
So far we have seen only a pair
template+component.
How do I compose a full app?

67

Putting the pieces together

app-root selector

index.html

uses

app.component.ts

defines
app.component.html

app.component.css

uses

app component

app.module.ts

loads

main.ts loads

loads

item.directive.ts

item directive

MODULES

DIRECTIVES

COMPONENTS

SELECTORS

Templates

Modules: NgModule
The Angular Modules (or NgModules) are Angular ways
of group together functional units: related components
(but also directives, pipes and services, etc).

Every Component must belong to an Angular Module
and cannot be part of more than one module. A
component is registered in a Module by declaring it in
the Module's metadata.

Every Angular app has a root module, conventionally
named AppModule, which provides the bootstrap
mechanism that launches the application.

Let's expand src

Part 1: boot Section

Part 2: deployment properties

Part 3: the app

Modules: NgModule
An app typically contains many functional modules.

NgModules can import and export functionality
from/to other NgModules.

Organizing code into distinct functional modules helps
in managing development of complex applications, and
in designing for reusability.

lazy-loading loads modules on demand—to minimize
the amount of code that needs to be loaded at startup.

app.module.ts
import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpClientModule } from '@angular/common/http';
import { AppComponent } from './app.component';
import { ItemDirective } from './item.directive';
// @NgModule decorator with its metadata
@NgModule({
declarations: [
AppComponent,
ItemDirective

],
imports: [
BrowserModule,
FormsModule,
HttpClientModule

],
providers: [],
bootstrap: [AppComponent]

})
export class AppModule { }

Part 3: the app

Adding a component to a module:
ng g – ng generate

To create a new module:
ng g module newModule

Assuming you already have a module:
cd newModule to change directory into the newModule folder
ng g component newComponent to create a component as a
child of the module.
or
ng g component myModule/new-component
(specifying the path to the module you want to insert the component
into)

For a full example, see
https://www.tektutorialshub.com/angular/angular-adding-child-component/

https://www.tektutorialshub.com/angular/angular-adding-child-component/

