Distributed Objects

Remote Method Invokation

I e S e e e 25N
° ° -~ 1 Application Facade Y
w e e e e e S S D P S L S e e 4
zm
=> e a R ” .y % %
Distributed Systems TR R D
= Workflow /i Components /i Entities
& J
r N
ga " Data Access |/ Data Helpers/\ " Service ‘]
gs _Components /i Utilities)\\ Agents
-)

By P

RO V\YT e

Data
Sources

Ul Components

Ul Process Components

PRESENTATION
LAYER

Object 1

Object Oriented Paradigm

invoke method

respond

Object 2

Client Host/Process

invoke method

Server Host/Process

Object 1

>

Object 2

*Locate remote objects. Applications can use various mechanisms to
obtain references to remote objects. For example, an application can
register its remote objects with RMI's simple naming facility, the RMI
registry. Alternatively, an application can pass and return remote
object references as part of other remote invocations.

Communicate with remote objects. Details of communication between
remote objects are handled by RMI. To the programmer, remote
communication looks similar to regular Java method invocations.

*Load class definitions for objects that are passed around. Because
RMI enables objects to be passed back and forth, it provides
mechanisms for loading an object's class definitions as well as for
transmitting an object's data.

The RMI model

>
».*

Q

How does RMI work?

2zs What Is its conceptual model?
ik

Local — Remote -

Client Host/Process Server Host/Process
Object 1 Object 2
“Post Office” | « »| “Post Oftice”
socket

Interaction

Local —
Client Host/Proces

Object 1

N\

Stub of Object 2

= - -

- - >

Remote-
Server Host/Process

Object 2

Y/

Skeleton of Object 2

Local —\
Client Host/P

Interface

Remote-
Server Host/Process

roce
Object 1

'\\(L

Stub of Object 2

= - -

- - >

Object 2

a

Skeleton of Object 2

Q

How could that be

.. Implemented?

A “do it yourself” implementation

1. Person: the interface

A “do it yourself”’ implementation

2. Person: The class

A “do it yourself” implementation

A “do it yourself” implementation |SERCISONNERKEICION

A “do it yourself” implementation |SERCISONNGRKEICION

A “do it yourself” implementation |SERCISONNGRKEICION

A “do it yourself” implementation | A0PGISOR e Stub)

A “do it yourself” implementation | A0PGISOR e Stub)

A “do it yourself” implementation [DIRCIONINSGHEHN

Open issues

-multiple instances

—Automatic stub and skeleton generation
-on demand server dentification

-on demand remote class activation

Q

... HOW do I actually use RMI?

(example taken from https://www.mkyong.com)

22

Remote Intertace

package it.unitn.rmiinterface; 1. Define the common interface

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface RMIInterface extends Remote {

public String helloTo(String name) throws RemoteException;

package it.unitn.rmiserver;

The S crver import java.rmi.Naming;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

2. Implement the service import it.unitn.RMIInterface;

public class ServerOperation extends UnicastRemoteObject
implements RMIInterface({

private static final long serialVersionUID = 1L;

protected ServerOperation() throws RemoteException {
super() ;

@Override
public String helloTo(String name) throws RemoteException{
System.err.println(name + " is trying to contact!");

return "Server says hello to " + name;

The Server

Srmiregistry 1099

WARNING:

When running the server, you get a
java.lang.ClassNotFoundException:
it.unitn.ronchet.rmi.rmidemo.RMIInterface

if not configured correctly!

3. Create Registry

The Server 4. Create registry

static void startRegistry(int port) ({
try {
LocateRegistry.createRegistry(port);
} catch (RemoteException remoteException) {
System.out.println("Unable to create Registry in startRegistry");
remoteException.printStackTrace(); System.exit(1l);

}

static boolean isRegistryAccessible(int port) {
try {
class NullObj extends UnicastRemoteObject {
protected NullObject() throws RemoteException {}
}
Naming.rebind("//localhost:" + port + "/nullObject", new NullObj());
} catch (RemoteException e) {
System.err.println("Registry in NOT accessible"); return false;
} catch (MalformedURLException e) {
e.printStackTrace(); return false;

}

System.out.println("Registry in accessible now"); return true;

The Server 4. Create registry

static void verifyRegistryAccessibility(int port) {
if (!isRegistryAccessible(port)) {
System.out.println("Registry is not running : starting it");
startRegistry(port);
if (!isRegistryAccessible(port)) {
System.out.println("Registry: starting it");
startRegistry(port);
if (!isRegistryAccessible(port)) {
System.out.println("Still unable to access registry: exiting");
System.exit(1);
}

The Server

public static void main(String[] args){

verifyRegistryAccessibility(port); 4ullegk%er)wnnself

try {
Naming.rebind("//localhost/MyServer", new ServerOperation());

System.out.println("Server ready");
} catch (Exception e) {
System.err.println("Server exception: " + e.toString());

e.printStackTrace();

package it.unitn.rmiclient

r]?}l lf import java.net.MalformedURLException
C C 1€Ilt import java.rmi.Naming
import java.rmi.NotBoundException

import java.rmi.RemoteException

import javax.swing.JOptionPane
import it.unitn.RMIInterface

public class ClientOperation {
private static RMIInterface remoteObj;
public static void main(String[] args)

throws MalformedURLException, RemoteException,
NotBoundException {

S.Ixmikup remoteObj = (RMIInterface) Naming.lookup("//
The Service localhost/MyServer");

String txt = JOptionPane.showInputDialog("What is
your name?");

6. Use Service | String response = remoteObj.helloTo(txt);

JOptionPane.showMessageDialog(null, response);

Deploy

COMPILE:

javac src/it/unitn/rmiinterface/RMIInterface.java
src/it/unitn/rmiserver/ServerOperation. java
src/it/unitn/rmiclient/ClientOperation. java

START REGISTRY
cd src

start rmiregistry

START SERVER
cd src

java it.unitn.rmiserver.ServerOperation

START CLIENT
cd src

java it.unitn.rmiclient.ClientOperation

Running

=
&y

a2y \ j ‘) MIE>

cample\src>java com.mkyong.rmiclient.ClientOpera

What is your name?

Y C:\WINDOWS\system32\cmd.exe - java com.mkyong.rmiserver.ServerOperation — O X
Y J) ¥

\SimpleRMIExample\src>start rmiregistry

SimpleRMIExample\src>java com.mkyong.rmiserver.ServerOperation
Server ready

Marilena is ¢t '"i,."ir'

Q

What do you have to change
g';?? in the process and in the code

2% if you run client and server
7 on different machines?

Q

Can you access instance variables
on the remote object?

33

Q

How do you pass parameters
in RMI?

VERY IMPORTANT: Parameter passing

Java Standard:

void f(int x)

Parameter x 1is passed by copy

void g (Object k)

Parameter k and return value are passed by reference

Java RMI:

void h(Object k)

Parameter k is passed by copy!

UNLESS k is a REMOTE OBJECT (in which case it is passed as
a REMOTE REFERENCE, i.e. its stub is copied if needed)

IMPORTANT: Parameter passing

Passing By-Value

When invoking a method using RMI,all parameters to the
remote method are passed by-value .This means that when a
client calls a server,all parameters are copied from one machine
to the other. To pass objects by value, they need to be serialized.

Passing by remote-reference

If you want to pass an object over the network by-reference,it
must be a remote object, and it must implement
java.rmi.Remote.A stub for the remote object is serialized and
passed to the remote host. The remote host can then use that
stub to invoke callbacks on your remote object. There is only
one copy of the object at any time,which means that all hosts
are calling the same object.

Q

&

* What is serialization?

Serialization

e Any basic primitive type (int,char,and so on) is automatically
serialized with the object and is available when deserialized.

eJava objects can be included with the serialized or not:

e Objects marked with the transient keyword are not serialized
with the object and are not available when deserialized.

e Any object that is not marked with the transient keyword
must implement java.lang.Serializable .These objects are
converted to bit-blob format along with the original object. If
your Java objects are neither transient nor implement
java.lang.Serializable, a NotSerializable Exception is thrown
when writeObject()is called.

Serialization

o All serializable classes must declare a

private static final field named serialVersionUID

to guarantee serialization compatibility between versions.

If no previous version of the class has been released, then the
value of this field can be any long value, as long as the value is

used consistently in future versions.

private static final long serialVersionUID = 227L,;

When not to Serialize

eThe object is large. Large objects may not be suitable for
serialization because operations you do with the serialized blob
may be very intensive. (one could save the blob to disk or
transporting the blob across the network)

e The object represents a resource that cannot be reconstructed
on the target machine.Some examples of such resources are
database connections and sockets.

e The object represents sensitive information that you do not
want to pass in a serialized stream..

Q

EypE What is CORBA?
fé;ﬁg .
=* What is RMI-IIOP?

Common Object Request Broker Architecture

The ORB is the basic mechanism by which
objects transparently make requests to - and
receive responses from - each other on the
same machine or across a network.

A client need not be aware of the mechanisms
used to communicate with or activate an
object, how the object is implemented, or
where the object is located.

see https://www.omg.org/spec/CORBA/3.4/Betal

Interface Detinition Language

IDL is a descriptive language used to define
data types and interfaces in a way that is
independent of the programming language or
operating system/processor platform. The IDL
specifies only the syntax used to define the
data types and interfaces.

It is normally used in connection with other
specifications that further define how these
types/interfaces are utilized in specific
contexts and platforms.

see https://www.omg.org/spec/IDL/About-IDL/

RMI-IIOP
RMI-IIOP is a special version of RMI that is compliant with CORBA.

RMI has some interesting features not available in RMI-IIOP,such
as distributed garbage collection, object activation and
downloadable class files.

EJB and J2EE mandate that you use RMI-IIOP, not RMI.
rmic —iiop generates IIOP stub and tie (instead of stub and
skeleton)

rmic —idl generates OMG IDL

See docs.oracle.com/javase/7/docs/technotes/tools/#rmi

Preparing and executing

NOTES :

the skeleton does not exist any more as
separate file(its functionality is absorbed by
the class file).

the rmic functionality has been absorbed by
javac, so the whole process becomes
transparent (but even more misterious..)

See docs.oracle.com/javase/tutorial/rmi/
for an example of current usage of rmi

Preparing and executing - security

The JDK security model requires code to be
granted specific permissions to be allowed to
perform certain operations.

You need to specify a policy file when you run
your server and client.

grant { permission java.net.SocketPermission "*:1024-65535",
"connect,accept”;
permission java.io.FilePermission "c:\\.path.\\", "read"; };

java -Djava.security.policy=java.policy executableClass

Access to system properties

Nota: instead of specifiying a property at
runtime (-D switch of java command), You can
hardwire the property into the code:

-Djava.security.policy=java.policy
System.getProperties () .put (

"jJava.security.policy",
"jJava.policy") ;

