
Introduction

Transactions

JDBC access (reminder)

Java
application

JDBC
API

JDBC
Driver

Data
source

The java.sql Object Model (reminder)

Application

Prepared
Statement

Callable
Statement

Connection

getConnection() creates

createStatement()

executeQuery()

ResultSet creates

getString()

ResultSet
Metadata

DBMetaData

loadsDriver
Manager Driver

creates

Statement

creates

Bank

package transactions_1;
import java.sql.*;
public class Bank {

public Connection getConnection(String jdbcDriverName,
String jdbcURL) {

try {
Class.forName(jdbcDriverName);
return DriverManager.getConnection(jdbcURL);

} catch (ClassNotFoundException ex) { ex.printStackTrace();
} catch (SQLException ex) { ex.printStackTrace(); }
return null;

}

public void releaseConnection(Connection conn) {
if (conn!=null)
try {
conn.close();

} catch (SQLException ex) { ex.printStackTrace(); }
}

1. getConnection/setConnection

Bank
public void deposit(int account, double amount, Connection conn)

throws SQLException{
String sql="UPDATE Account SET Balance = Balance + "+ amount+

"WHERE AccountId = "+account;
Statement stmt=conn.createStatement();
stmt.executeQuery(sql);
System.out.println("Deposited "+amount+" to account "+account);

}

public void withdraw(int account, double amount, Connection conn)
throws SQLException{

String sql="UPDATE Account SET Balance = Balance - "+ amount+
"WHERE AccountId = "+account;

Statement stmt=conn.createStatement();
stmt.executeQuery(sql);
System.out.println("Withdrew “-amount+" from account "+

account);
}

2. deposit/withdraw

Bank

public void printBalance(Connection conn) {
ResultSet rs=null;
Statement stmt=null;
try {
stmt=conn.createStatement();
rs=stmt.executeQuery("SELECT * FROM Account");
while (rs.next())
System.out.println("Account "+rs.getInt(1)+

" has a balnce of "+rs.getDouble(2));
} catch (SQLException ex) { ex.printStackTrace(); }
finally {
try {
if (rs!=null)
rs.close();

if (stmt!=null)
stmt.close();

} catch (SQLException ex) { ex.printStackTrace(); }
}

}

3. printBalance

Bank

public void transferFunds(int fromAccount, int toAccount,
double amount, Connection conn){

Statement stmt=null;
try {
withdraw(fromAccount, amount, conn);
deposit(toAccount,amount,conn);

}
catch (SQLException ex) {
System.out.println("An error occured!");
ex.printStackTrace();

}
}

4. trasferFunds

Bank

public static void main(String[] args) {
if (args.length <3) {
System.exit(1);

}
Connection conn=null;
Bank bank = new Bank();
try {
conn=bank.getConnection(args[0],args[1]);
bank.transferFunds(1,2,Double.parseDouble(args[2]),conn);
bank.printBalance(conn);

} catch (NumberFormatException ex) { ex.printStackTrace();
} finally {bank.releaseConnection(conn);}

}
}

5. main

Bank

public void transferFunds(int fromAccount, int toAccount,
double amount, Connection conn){

Statement stmt=null;
try {
conn.setAutoCommit(false);
withdraw(fromAccount, amount, conn);
deposit(toAccount,amount,conn);
conn.commit();

}
catch (SQLException ex) {
System.out.println("An error occured!");
ex.printStackTrace();
try {
conn.rollback();

} catch (SQLException e) { e.printStackTrace(); }
}

}

transferFunds – fixed version!

TR
AN
SA
CT
IO
N

A transaction defines a logical unit of work that
either completely succeeds or produces no
result at all.

A distributed transaction is a transaction that
accesses and updates data on two or more
networked resources, and therefore must be
coordinated among those resources (not
necessariy only DB)

Transactions

ACID

Transactions properties

The ACID Properties
Atomicity guarantees that many operations are bundled
together and appear as one contiguous unit of work .

Consistency guarantees that a transaction leaves the system ’s
state to be consistent after a transaction completes.

Isolation protects concurrently executing transactions from
seeing eachother ’s incomplete results.

Durability guarantees that updates to managed resources,such
as database records,survive failures. (Recoverable resources
keep a transactional log for exactly this purpose.If the resource
crashes,the permanent data can be reconstructed by reapplying
the steps in the log.)

Lost Update

Read A

Write A

Increm. A
Read A

Write A

Increm. A

DBbegin

commit

begin

commit

Dirty Read

Read A

Write A

Increm. A

Read A

Write A

Increm. A

DBbegin

rollback

begin

commit

begin

commit

Unrepeatable Read

Read A

Read A

Write A

Increm. A

DBbegin

commit

begin

commit
Read A

Phantom Read (ghost update)

Read A

Read A

Write A
A=A-1

DBbegin

commit

begin

commit

Read B Read B

Write B
B=B+1

IC=A+B

Integrity
Constraint:
A+B=100

Integrity constraint
violated!

Isolation levels

ISOLATION
LEVEL

Dirty Read Unrepeatable
Read

Phantom Read

READ
UNCOMMITTED

YES YES YES

READ
COMMITTED

NO YES YES

REPEATABLE READ NO NO YES

SERIALIZABLE NO NO NO

Default level for many
DBMS

Pessimistic and Optimistic Concurrency Control Strategies

TIPO Dimension Concurrency Problems

Pessimistic—Your EJB locks the
source data for the entire time it
needs data, not allowing anything
else to potentially update the data
until it completes its transaction.

Small Systems Low Does not scale well

Optimistic - Your EJB implements
a strategy to detect whether a
change has occurred to the source
data between the time it was read
and the time it now needs to be
updated. Locks are placed on the
data only for the small periods of
time the EJB interacts with the
database.

Large Systems High Complexity of the
collision detection
code

ACID vs BASE
Classic distributed

systems: focused on
ACID semantics

• Atomic
• Consistent
• Isolated
• Durable

Modern Internet
systems: focused on
BASE

• Basically Available
• Soft-state (or

scalable)
• Eventually consistent

Distributed Transactions

Actors

A transactional object (or transactional component) is an application
component that is involved in a transaction.
A transaction manager is responsible for managing the transactional
operations of the transactional components.
A resource is a persistent storage from which you read or write.
A resource manager manages a resource. Resource managers are
responsible for managing all state that is permanent.
The most popular interface for resource managers is the X/Open XA
resource manager interface (a de facto standard): a deployment with
heterogeneous resource managers from different vendors can
interoperate.

Distributed Systems

Local
Transaction
Manager A

Resource
Manager A

DB A DB B1a DB B1b
Messaging
Server B2a

Resource
Manager B2

Local
Transaction
Manager B

Resource
Manager B1

Distributed
Transaction
Manager

Local vs. Distributed transactions – part 1

see https://www.progress.com/tutorials/jdbc/understanding-jta

Local vs. Distributed transactions – part 2

for details see
https://www.progress.com/tutorials/jdbc/understanding-jta

1—UserTransaction—an interface that provides the
application the ability to control transaction
boundaries programmatically. It starts a global
transaction and associates the transaction with the
calling thread.

2—Transaction Manager—an interfacethat allows
the application server to control transaction
boundaries on behalf of the application being
managed.

3—XAResource—an interface mapping the industry
standard XA (Distributed Transaction Processing:
The XA Specification).

A word of warning
Transactions over replicated data introduce extra challenges.

What goals might you want from a shared-data system?

Strong Consistency: all clients see the same view, even in the presence of
updates

High Availability: all clients can find some replica of the data, even in the
presence of failures

Partition-tolerance: the system properties hold even when the system is
partitioned

Brewer's Theorem: that's impossible! you can have only two of them at the
same time.

This and the following three slides are adpted from lectures by
Prof. Ion Stoica & Scott Shenker (UC, Berkeley)

Java Transactions

Transactions

Java Transaction API

JTA consists of two sets of interfaces:

•one for X/Open XA resource managers (which you don ’t
need to worry about)

•one that we will use to support programmatic transaction
control: javax.transaction.UserTransaction .

javax.transaction.UserTransaction
Methods for Transactional Boundary Interaction

begin()
Begins a new transaction.This transaction becomes associated with
the current thread.
commit()
Runs the two-phase commit protocol on an existing transaction
associated with the current thread. Each resource manager will
make its updates durable

getStatus()
Retrieves the status of the transaction associated with this thread.
rollback()
Forces a rollback of the transaction associated with the current
thread.

javax.transaction.UserTransaction
Methods for Transactional Boundary Interaction

setRollbackOnly()
Calls this to force the current transaction to roll back.
This will eventually force the transaction to abort.

setTransactionTimeout(int)
The transaction timeout is the maximum amount of time that a
transaction can run before it ’s aborted.This is useful to avoid
deadlock situations,when precious resources are being held by a
transaction that is currently running.

The javax.transaction.Status Constants

STATUS_ACTIVE
A transaction is currently happening and is active.
STATUS_NO_TRANSACTION
No transaction is currently happening.
STATUS_MARKED_ROLLBACK The current transaction will
eventually abort because it ’s been marked for rollback.This could
be because some party called UserTransaction.setRollbackOnly().
STATUS_ROLLING_BACK The current transaction is in the process of
rolling back.
STATUS_ROLLEDBACK The current transaction has been rolled
back.
STATUS_UNKNOWN The status of the current transaction cannot
be determined.

The javax.transaction.Status Constants

STATUS_PREPARING The current transaction is preparing to be
committed (during Phase One of the two-phase commit protocol).

STATUS_PREPARED The current transaction has been prepared to
be committed (Phase One is complete).

STATUS_COMMITTING The current transaction is in the process of
being com mitted right now (during Phase Two).

STATUS_COMMITTED The current transaction has been committed
(Phase Two is complete).

Without annotation
import javax.transaction.UserTransaction;

…
try {
java.util.Properties env =...
// Get the JNDI initial context
Context ctx =new InitialContext(env);

userTran=(javax.transaction.UserTransaction)
ctx.lookup("java:comp/UserTransaction");

// Execute the transaction
userTran.begin();
/* perform business operations */
userTran.commit();

}
catch (Exception e){

//deal with any exceptions}

Set environment up.You
must set the JNDI
InitialContext
factory,the Provider
URL,and any login names
or passwords necessary
to access JNDI.

Look up the JTA
UserTransaction interface
via JNDI.The container is
required to make the JTA
available at the location
java:comp/UserTransaction

With annotation

import javax.transaction.UserTransaction;

@PersistenceContext private EntytiManage em
@Resource private javax.transaction.UserTransactin userTran
…
try {
java.util.Properties env =...

// Execute the transaction
userTran.begin();
/* perform business operations */
userTran.commit();

}
catch (Exception e){

//deal with any exceptions}

Declarative Transactions

Transactions in EJB

Who begins a transaction?
Who begins a transaction? Who issues either a commit or abort?
This is called demarcating transactional boundaries .

There are three ways to demarcate transactions:
•programmatically:

you are responsible for issuing a begin statement and either a
commit or an abort statement.

•declaratively,
the EJB container intercepts the request and starts up a
transaction automatically on behalf of your bean.

•client-initiated.
write code to start and end the transaction from the client code
outside of your bean.

Programmatic vs. declarative
programmatic transactions:
your bean has full control over transactional boundaries.For
instance,you can use programmatic transactions to run a
series of minitransactions within a bean method.
When using programmatic transactions,always try to complete your
transactions in the same method that you began them.Doing
otherwise results in spaghetti code where it is difficult to track the
transactions;the performance decreases because the transaction is
held open longer.
declarative transactions:
your entire bean method must either run under a transaction
or not run under a transaction.
Transactions are simpler! (just declare them in the descriptor)

Client-initiated
Client initiated transactions:
A non-transactional remote client calls an enterprise bean that
performs its own transactions The bean succeeds in the
transaction,but the network or application server crashes
before the result is returned to a remote client.The remote
client would receive a Java RMI RemoteException indicating a
network error,but would not know whether the transaction
that took place in the enterprise bean was a success or a
failure.

With client-controlled transactions, if anything goes wrong,the
client will know about it.
The downside to client-controlled transactions is that if the
client is located far from the server, transactions are likely to
take a longer time and the efficiency will suffer.

Transactional Models
A flat transaction is the simplest transactional model to
understand.A flat transaction is a series of operations that are
performed atomically as a single unit of work .

A nested transaction allows you to embed atomic units of work
within other units of work.The unit of work that is nested
within another unit of work can roll back without forcing the
entire transaction to roll back. (subtransactions can
independently roll back without affecting higher transactions
in the tree)
(Not currently mandated by the EJB specification)

Other models: chained transactions and sagas.
(Not supported by the EJB specification)

EJB Transaction Attribute Values

Required
You want your method to always run in a transaction.
If a transaction is already running,your bean joins in on that
transaction. If no transaction is running,the EJB container
starts one for you.

Never
Your bean cannot be involved in a transaction.
If the client calls your bean in a transaction,the container
throws an exception back to the client
(java.rmi.RemoteException if
remote, javax.ejb.EJBException if local).

EJB Transaction Attribute Values

Supports
The method runs only in a transaction if the client had one
running already —it joins that transaction.
If the client does not have a transaction,the bean runs with no
transaction at all.

Mandatory
a transaction must be already running when your bean
method is called. If a transaction isn ’t running,
javax.ejb.TransactionRequiredException is thrown back to the
caller (or javax.ejb.TransactionRequiredLocalException if the
client is local).

EJB Transaction Attribute Values

NotSupported
your bean cannot be involved in a transaction at all.
For example,assume we have two enterprise beans,A and
B.Let ’s assume bean A begins a transaction and then calls
bean B. If bean B is using the NotSupported attribute,the
transaction that A started is suspended. None of B’s
operations are transactional,such as reads/writes to
databases. When B completes,A ’s transaction is resumed.

EJB Transaction Attribute Values

RequiresNew

You should use the RequiresNew attribute if you always want a
new transaction to begin when your bean is called. If a
transaction is already underway when your bean is called,that
transaction is suspended during the bean invocation.

The container then launches a new transaction and delegates
the call to the bean.The bean performs its operations and
eventually completes.The container then commits or aborts
the transaction and finally resumes the old transaction. If no
transaction is running when your bean is called,there is
nothing to suspend or resume.

EJB Transaction Attribute Values

TYPE PRECONDITION POSTCONDITION

Required NO transaction NEW
PRE-EXISTING PRE-EXISTING

RequiresNew NO transaction NEW
PRE-ESISTENTE NEW

Supports NO transaction NO transaction
PRE-EXISTING PRE-EXISTING

Mandatory NO transaction error
PRE-EXISTING PRE-EXISTING

NotSupported Nessuna transazione NO transaction
PRE-ESISTENTE NO transaction

Never NO transaction NO transaction
PRE-EXISTING error

Annotations
@Stateless
@TransactionManagement(javax.ejb.TransactonManage

mentType.CONTAINER)
public class Mybean implements Myinterface{
@PersistencyContext private EntityManager em;
@Resource private SessionContext ctx;
…
@TransactionAttribute(javax.ejb.TransactonManagemen

tType.REQUIRED)
public void myTransactedMethod(){…

if (…) ctx.setRollbackOnly;
}

}

EJB Transaction Attribute Values
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>Employee</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Mandatory</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>Employee</ejb-name>
<method-name>setName</method-name>
<method-param>String</method-param>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

Dooming container-managed transactions

call setRollbackOnly() on your EJB context object.
If the transaction participant is not an Container Managed EJB component, you can
doom a transaction by looking up the JTA and calling the JTA ’s setRollbackOnly()
method,

Container-managed transactional beans can detect doomed transactions by calling
the getRollbackOnly()method on the EJB context object. If this method returns
true ,the transaction is doomed.

Isolation levels in EJB

BMT:
you specify isolation levels with your resource manager API (such as JDBC).
For example,you could call java.sql.Connection.SetTransactionIsolation(...).

CMT:
there is no way to specify isolation levels in the deployment descriptor.
You need to either use resource manager APIs (such as JDBC),or rely on your
container ’s tools or database ’s tools to specify isolation.

Isolation portability problems

Unfortunately, there is no way to specify isolation for container-
managed transactional beans in a portable way—you are reliant
on container and database tools.

This means if you have written an application, you cannot ship that application
with built-in isolation. The deployer now needs to know about transaction
isolation when he uses the container’s tools, and the deployer might not know
a whole lot about your application’s transactional behavior.

