
UNIVERSITÀ DEGLI STUDI DI TRENTO
Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Magistrale in Informatica

Final thesis

Using Kinect to emulate an Interactive
Whiteboard

Uso del Kinect per emulare le
funzionalità di una Lavagna Interattiva

Multimediale

Relatore / 1st Reader: Laureando / Graduant:
Prof. Marco Ronchetti Mattia Avancini

Anno Accademico 2011 - 2012

Mattia Avancini: Using Kinect to emulate an Interactive Whiteboard, Tesi di laurea
magistrale, © dicembre 2011.

“Stay Hungry. Stay Foolish."

— Steve Jobs (Stanford Commencement Address, 2005) —

C O N T E N T S

list of figures ix

list of tables xi

list of source code xii

list of acronyms and abbreviations xiii

Glossary xv

1 introduction 1

1.1 Background and motivation . 1

1.2 Objectives . 2

1.3 Structure and contents . 2

2 background 5

2.1 Kinect . 5

2.1.1 Introduction . 5

2.1.2 History . 6

2.1.3 Kinect Hardware and Specification 8

2.1.4 Operating modes . 10

2.2 Natural Interaction . 14

2.2.1 Introduction . 14

2.2.2 Gesture . 15

2.2.3 Gesture recognition . 15

2.2.4 Body Tracking . 16

2.2.5 Speech Recognition . 16

2.3 Interactive Whiteboards . 17

2.3.1 Introduction . 17

2.3.2 Technology . 18

2.3.3 WiiLD . 20

2.3.4 WiiLDOS . 22

3 kinect frameworks 27

3.1 OpenNI . 27

3.1.1 Introduction . 27

3.1.2 Modules . 28

v

vi Contents

3.1.3 Production nodes . 29

3.1.4 Production chains . 31

3.1.5 Capabilities . 31

3.1.6 Licensing . 32

3.2 NITE . 33

3.2.1 Introduction . 33

3.2.2 NITE Algorithms . 34

3.2.3 NITE Control Paradigms . 37

3.2.4 Licensing . 39

3.3 Kinect for Windows SDK Beta . 40

3.3.1 Introduction . 40

3.3.2 Features . 40

3.3.3 Licensing . 41

3.4 Others . 42

3.4.1 Introduction . 42

3.4.2 OpenKinect - Libfreenect . 42

3.4.3 FAAST . 42

3.4.4 ROS OpenNI . 43

3.4.5 As3Kinect . 44

3.5 Comparisons . 45

3.5.1 Introduction . 45

3.5.2 OpenNI/NITE Framework . 45

3.5.3 Kinect for Windows SDK Beta 46

4 developed system 49

4.1 Proposed solution . 49

4.2 UML . 49

4.2.1 External view . 49

4.2.2 Internal view . 52

4.3 SimpleOpenNI . 54

4.3.1 Processing . 55

4.3.2 First Program . 56

4.3.3 Skeletal Tracking . 60

4.3.4 Eclipse . 64

4.4 System Architecture . 65

4.5 Development Process . 66

4.6 Implementation Details . 70

4.6.1 Background Removal . 70

4.6.2 Calibration . 71

4.6.3 Smoothing data . 75

4.6.4 Notification System . 75

Contents vii

4.6.5 Internationalization . 76

5 validation 77

5.1 Researchers’ Night 2011 . 77

5.2 Una Rete di Lavagne . 78

5.3 Presentation during Open Day . 78

5.4 Results and statistics . 78

5.4.1 Personal informations . 79

5.4.2 Kinect . 80

5.4.3 Interactive Whiteboard . 82

5.4.4 Calibration phase . 83

5.4.5 Utilization phase . 84

5.4.6 Final opinion of the user . 85

6 conclusions and future works 89

6.1 Future Works . 89

a installation 91

a.1 Installing on Windows . 91

a.1.1 Installing Kinect driver on Windows 91

a.1.2 Installing OpenNI on Windows 92

a.1.3 Installing NITE on Windows 92

a.1.4 Trying out the Open Natural Interaction (OpenNI) and Natural
Interaction Technology for End-user (NITE) samples on Windows 92

a.1.5 Installing Processing on Windows 92

a.1.6 Installing SimpleOpenNI on Windows 93

a.1.7 Run the Interactive Whiteboard (IWB) emulation 93

a.2 Installing on OS X . 93

a.2.1 Installing OpenNI on OS X . 94

a.2.2 Installing NITE on OS X . 95

a.2.3 Trying out the samples on OS X 95

a.2.4 Installing Processing on OS X 95

a.2.5 Installing SimpleOpenNI on OS X 95

a.2.6 Run the IWB emulation . 96

a.3 Installing on Linux . 96

a.3.1 Installing Kinect driver on Linux 96

a.3.2 Installing OpenNI on Linux . 97

a.3.3 Installing NITE on Linux . 97

a.3.4 Trying out the samples on OS X 98

a.3.5 Installing Processing on Linux 98

a.3.6 Installing SimpleOpenNI on Linux 98

a.3.7 Run the IWB emulation . 99

viii contents

a.4 Installing Microsoft Kinect SDK . 99

a.4.1 System requirements . 99

a.4.2 Installation . 100

b source code 101

b.1 First Program . 101

b.2 Skeletal Tracking . 101

b.3 Eclipse Integration . 104

b.4 Background Removal . 106

b.5 State Context . 107

bibliography 109

L I S T O F F I G U R E S

Figure 1 Motion Gaming Controller Comparison 5

Figure 2 DepthJS . 6

Figure 3 WAVI Xtion . 7

Figure 4 OpenNI logo . 7

Figure 5 PrimeSense logo . 7

Figure 6 Kinect disassembled . 8

Figure 7 Kinect sensors . 9

Figure 8 PrimeSense functioning diagram 10

Figure 9 Kinect infrared light pattern 11

Figure 10 Kinect power supply . 11

Figure 11 Kinect depth detection. 12

Figure 12 Kinect skeletal tracking. 13

Figure 13 Human Computer Interaction (HCI) evolution chart 14

Figure 14 Interactive Whiteboard (IWB) . 17

Figure 15 Wiimote Lavagna Digitale (WiiLD) operating mode schema . . 21

Figure 16 Wiimote Lavagna Digitale Operating System (WiiLDOS)
GNU/Linux Distribtuion . 23

Figure 17 WiiLDOS Interface . 24

Figure 18 OpenNI Architecture . 28

Figure 19 OpenNI Production Chains . 31

Figure 20 Nite Layered View . 34

Figure 21 NITE Calibration Pose . 36

Figure 22 NITE Joint Definitions . 36

Figure 23 NITE Wave gesture . 38

Figure 24 NITE Circle gesture . 39

Figure 25 NITE Selectable Slider 2D . 40

Figure 26 Skeletal Viewer Walkthrough using Kinect for Windows
Software Development Kit (SDK) Beta. 41

Figure 27 Flexible Action and Articulated Skeleton Toolkit (FAAST) 43

Figure 28 MIT Kinect Demos - Minority Report Interface 44

Figure 29 Use Case Diagram . 51

Figure 30 Activity Diagram - Calibration 52

Figure 31 Package Diagram . 53

Figure 32 Class Diagram - Calibration . 54

Figure 33 Sequence Diagram - Skeleton Calibration 54

Figure 34 First program with SimpleOpenNI 60

ix

x List of Figures

Figure 35 NITE Calibration flow . 62

Figure 36 Skeleton Tracking example . 64

Figure 37 System Architecture . 66

Figure 38 Background Removal . 71

Figure 39 Start Pose Visual Feedback . 72

Figure 40 Point Calibration Window . 73

Figure 41 Finger Calibration . 74

Figure 42 Start Calibration Window . 75

Figure 43 Notification System . 76

Figure 44 “Researchers’ Night" in Trento 78

Figure 45 Our stand at “Researchers’ Night" in Trento 78

Figure 46 Una Rete di Lavagne . 79

Figure 47 Demo during the conference “Una Rete di Lavagne" 79

Figure 48 Personal informations results 80

Figure 49 Did you know Kinect? . 81

Figure 50 Have you ever used the Kinect? 81

Figure 51 Do you own a Kinect? . 82

Figure 52 Did you know the Interactive Whiteboard? 82

Figure 53 Have you ever used an Interactive Whiteboard? 83

Figure 54 In your personal opinion can be the Interactive Whiteboard
useful for teaching? . 83

Figure 55 Calibration phase . 84

Figure 56 Utilization phase . 86

Figure 57 Is easy to interact with the Kinect? 87

Figure 58 Is the Kinect useful in education? 87

L I S T O F TA B L E S

Table 1 Kinect Sensor Array Specifications[23] 9

Table 2 Playable Ranges for the Kinect 12

xi

L I S T I N G S

4.1 SamplesConfig.xml . 58

B.1 DepthImage.pde . 101

B.2 User.pde . 102

B.3 Eclipse Intergration Example . 104

B.4 Background removal function . 106

B.5 State Context . 107

xii

L I S T O F A C R O N Y M S A N D A B B R E VAT I O N S

ADC Analog-to-digital Converter

AEC Automatic Echo Cancellation

API Application Programming Interface

BSD Berkeley Software Distribution

CMOS Complementary Metal Oxide Semiconductor

DC Direct Current

DST Dispersive Signal Technology

E3 Electronic Entertainment Expo

FAAST Flexible Action and Articulated Skeleton Toolkit

FBK Fondazione Bruno Kessler

FPS Frame per second

FTIR Frustrated Total Internal Reflection

GNU GNU is Not Unix

GPL General Public License

HCI Human Computer Interaction

IDE Integrated Development Environment

IDE Integrated Development Environment

IR Infrared

IT Information Technology

IWB Interactive Whiteboard

LED Light Emitting Diode

LGPL Lesser General Public License

MIT Massachusetts Institute of Technology

xiii

xiv Listings

NI Natural Interaction

NITE Natural Interaction Technology for End-user

NUI Natural User Interface

OpenNI Open Natural Interaction

PC Personal Computer

PCM Pulse Code Modulation

QVGA Quarter Video Graphics Array

RAM Random Access Memory

RGB Red, Green and Blue

ROS Robot Operating System

SDK Software Development Kit

SOA Service Oriented Architecture

UML Unified Modeling Language

USB Universal Serial Bus

VGA Video Graphics Array

VRPN Virtual Reality Peripheral Network

WiiLD Wiimote Lavagna Digitale

WiiLDOS Wiimote Lavagna Digitale Operating System

XML eXtensible Markup Language

G LO S S A R Y

background removal The background removal is a visual feedback reported to
the user, where the user body is cut otu form the surrounding envi-
ronment., p. 50.

click gesture A click gesture is a gesture where the user needs to push hand
towards in the direction of the sensor and immediately pull his or her
hand back., p. 35.

depth camera A depth camera is a particular type of sensor which is able to
measure the depth for each of the captured pixels at a knowing frame-
rate., p. 12.

focus gesture A focus gesture is a gesture that starts a tracking session during
which the user’s hand is tracked and modeled as an hand point., p. 35.

hack It stands for a workaround, an inelegant but effective solution to a
particular problem: in this case use Kinect in a different way from
usual, that is not connected to Xbox 360. You can find some examples
at http://www.kinecthacks.com/, p. 1.

Kinect A motion sensing input device developed and sold by Microsoft to
control and interact with the Xbox 360 without the need of a physical
controller., p. x.

limbs The straight lines drawn by the SimpleOpenNI library that connects
two adjacent joints, it is a graphic model representation of the 3D
model of the skeleton., p. 50.

point control A point control is an object which receives the stream with current
active hand point, analyze it and tries to recognize some meaningful
behaviour, in practice it tries to recognize if a specific gesture is per-
formed., p. 37.

production chain A production chain is the interact between various produc-
tion nodes to produce high-level data consumed by the application.,
p. 31.

production node A production node has the key role of producing and generat-
ing meaningful 3D data for Natural Interaction (NI) based applications,
which can be a complex task., p. 29.

xv

xvi GLOSSARY

push gesture A push gesture is a gesture where the user needs to push hand
towards in the direction of the sensor and immediately pull his or her
hand back., p. 38.

range imaging camera A camera that produce a 2D image showing the distance
to points in a scene from a specific point., p. 7.

reference pattern The reference pattern is stored in the memory of the sensor
and it is defined capturing a specific plane at a known distance from
the sensor.[12]. This is used to calculate the distortion of the observed
pattern and finally compute the 3D structure of the detected environ-
ment., p. xvi.

speckle pattern Kinect uses a dot pattern based on speckles to calculate the
depth of the objects. The pattern is obtained projecting an infra-red
light on objects and measuring the distortion with the respect to a
reference pattern., p. 9.

State Pattern The State Pattern is a behavioral design pattern. This pattern is
used to represent the state of an object, in particular when an object
is a a function of its state and it must change its behavior at run-time
depending on that state [9]., p. 73.

steady detector A steady detector is a gesture that starts a tracking session dur-
ing which the user’s hand is tracked and modeled as an hand point.,
p. 38.

structured light Structured-light is a specially designed light pattern used to
determine the depth of object in the space using only a single image
of the reflected light., p. 9.

swipe gesture A swipe gesture is a gesture where the user perform a short
movement with the hand in a specific direction, followed by the hand
resting., p. 38.

wave gesture A wave gesture is a gesture where the user changing the hand
direction suddenly from left to right and viceversa within a timeout.,
p. 35.

1 I N T R O D U C T I O N

1.1 background and motivation

It is widely known the fact that traditional Interactive Whiteboard (IWB) are very
expensive. At University of Trento there are different teams which work to possible
new solutions to this problem examining new technologies and new paradigms
of interaction such as the projects we will see in 2.3.3 and 2.3.4. These projects are
based on the introduction of gaming devices as a concrete tool to support teaching
and learning activities. They can be considered the forerunners in this type of
approach to the problem. They constitute the starting point of this thesis and an
important inspiration on the approach we needed to elaborate a concrete solution
to this specific problem.

In November 2010 Microsoft has released what they define “the birth of the
next-generation of home entertainment”[26]. Microsoft didn’t now at the mo-
ment of the launch the fact that Kinect is not only a “common" game device, it
is more than that. It is a new technology and a new paradigm of interaction, it
renders legacy external peripherals currently used today, such as remote controls,
keypads or a mouse obsolete. It originates a lot of interest in all the Information
Technology (IT) world, indeed on the Web were appeared rapidly a lot of “hacks"
and university projects that highlight the potentiality of a technology of this kind.
Many of these projects were supported by the frameworks provided by the cre-
ator and precursor of this new paradigm of interaction, an Israeli company called
“PrimeSense" which was the first to publish stable frameworks to interact and de-
velop Kinect-based application. Microsoft itself has noted this phenomena and
released a non-commercial Kinect Software Development Kit (SDK) for Windows on
June 16, 2011.

The Kinect can be defined a Natural Interaction (NI) device, which operates in the
context of Natural User Interface (NUI), a new emerging metaphysical paradigm in
Human Computer Interaction (HCI). NI refers to a concept whereby the interaction
with devices is based on human senses [17]. The main goal of the NI paradigm
is to transform the legacy interfaces and devices used during the last years of
technology evolution in a more intuitive and naturally interaction without the
need to wear particular devices or learn complicated instructions to use them.
The Kinect can perfectly play this role in the process of transformation.

1

2 introduction

The supervisor of this thesis Professor Ronchetti, who hold the role of scientific
coordinator of the various projects designed to find possible low-cost solutions to
emulate an IWB, he proposed me to study the possibility this new technology and
its possible applications in this specific field of research.

1.2 objectives

The aim of this thesis is to analyse this new technology and all the problems
directly connected to its introduction, then understand if the capabilities and fea-
tures offered can be compatible with the requirements needed to implement an
emulation of an IWB and lastly develop a possible solution for the problem using
the Kinect.

1.3 structure and contents

In this work we will propose a low-cost solution to emulate an IWB based on
the introduction of the Kinect as a concrete tool to support teaching and learning
activities. The solution proposed in this thesis take advantage from the technology
offered by this kind of device, in particular we will see how the depth camera of the
Kinect can be used to perform a skeleton recognition mapping the mouse position.
We project the computer desktop on a surface and the mouse is positioned exactly
where the user puts his or her index finger, controlling in this way the computer
involved in the tracking. In Chapter 2 we will present the device, its technical
characteristics and specification and its different operating modes. Inside the
Chapter 2 we will give a brief look at the Natural Interaction (NI) concept, the new
paradigm of interaction which Kinect belongs. In Chapter 2 we will also see a
brief recap regarding the IWB, how they works and what are the main technology
aspects involved and we will see other two projects developed at University of
Trento to propose low-cost solution to emulate an IWB introducing other gaming
device to support teaching activities.

In Chapter 3 we will analyse the main Kinect frameworks proposed by the
market which constitute the infrastructure of this thesis. We will see the main
functionalities and capabilities offered by Open Natural Interaction (OpenNI) and
Natural Interaction Technology for End-user (NITE). In addition we will make a brief
parenthesis on the Software Development Kit (SDK) offered by Microsoft, this solu-
tion isn’t considered in this thesis because when we started to develop our pro-
totype wasn’t already released. We will also propose other possible frameworks
you can find on online.

1.3 structure and contents 3

The Chapter 4 is the key point of this work because here we will present our de-
veloped prototype relative to the emulation of an IWB. The solution we proposed
provides an emulation of an IWB where we control the mouse position mapping it
with the user’s hand joint exploiting the skeleton tracking capabilities offered by the
device and the OpenNI/NITE frameworks, in particular we are able to put exactly
the mouse cursor on the top of the index finger of the user. We will start showing
the Unified Modeling Language (UML) diagrams constitute the foundation of our
proposed solution from an external and internal point of view. We will present the
SimpleOpeNI library, a simple wrapper, a simple OpenNI and NITE wrapper for
Processing. Our prototype was built on top of this library to have a simple and ab-
stract programming tool which can take advantage on all the functionalities and
capabilities provided by OpenNI and NITE. We will drive the user in the process
to understand how develop a Kinect-based application providing some examples
written in Processing we used as reference during our development process. In
the last two sections of the Chapter 4 we will analyse the development details
of the proposed solution examining the development process we have adopted
phase-by-phase and the implementation details contained in this project provid-
ing some code examples and solutions to the problem we have encountered.

The last Chapter 5 illustrates the various results and all the data collected dur-
ing the test phase we performed to understand the quality of the solution pro-
vided and how the people react when they have to deal with a technology of this
kind.

2 B A C KG R O U N D

2.1 kinect

2.1.1 Introduction

Kinect1 is a motion sensing input device developed and sold by Microsoft to
control and interact with the Xbox 360 without the need of a physical controller.
Kinect originally known as “Project Natal"[26] enters in the same market sector
occupied by Wii Remote2 sold by Nintendo and PlayStation Move3 with PlayStation
Ey4 motion controllers produced by Sony to interact with home consoles Wii and
PlayStation 3, respectively. Shane Kim, corporate vice president for strategy and
business development at Microsoft’s game division defines Kinect in the interview
reported in [26] as “the birth of the next-generation of home entertainment”.

Figure 1: Motion Gaming Controller Comparison. In this picture you can see the Kinect,
the Wii Remote and the PlayStation Move

1 http://www.xbox.com/en-US/kinect
2 Wii Remote is the primary controller of Wii, a console produced by Nintendo. It allows gesture

recognition and pointing through the use of accelerometer and optical sensor technology.
3 It is an handheld motion controller PlayStation 3 produced by Sony. It interacts with the PlayStation

Eye camera to track the position and uses inertial sensors to detect its motion in the space.
4 A digital camera, which is based on technology that uses computer vision and gesture recognition

to process images taken by the camera. Like the Kinect is equipped with a built-in microphone
array.

5

6 background

Kinect is not only a new innovative game controller but starting from the launch
date on November 4, 2010 it has created a lot of interest in all the IT world, indeed
on the Web were appeared rapidly a lot of “hacks" and university projects that
highlight the potentiality of a technology of this kind. Microsoft itself has noted
this phenomena and has released a non-commercial Kinect Software Development
Kit (SDK) for Windows on June 16, 2011. Some rumours on the Web as reported
in [31] talk about a possible integration of the Kinect on Windows 8: leaked doc-
uments out of Redmond show some Kinect-like features inside Windows 8. We
will discover the fact that control the computer using Kinect is a real possibility in
the future.

Figure 2: DepthJS. A famous “Kinect hack” developed by a group from MIT Media Lab
by the name of Fluid Interfaces Group. DepthJS is framework that allows any
web page to interact with Microsoft Kinect via Javascript.

In this chapter we will present the Microsoft Kinect starting from a brief history
relative to its development and launch. The next step is to going into more techni-
cal details seeing the hardware components and some specifications. The chapter
ends with a broad explanation on the different operating modes of the Kinect.

2.1.2 History

In this section we will report a brief history relative to Kinect development
and launch. Kinect was first announced on June 1, 2009 during the Electronic
Entertainment Expo (E3) 2009, identified with the previously mentioned code name
“Project Natal". On June 13, 2010 during the E3 2010, Microsoft announced that the
device would officially be called Kinect and the launch date scheduled for North
America will be November 4, 2010. The Europe launch date was postponed by
one week. Having sold 8 million units in its first 60 days on the market, Kinect
has claimed the Guinness World Record of being the “fastest selling consumer
electronics device"[14].

2.1 kinect 7

Kinect hardware is based on the technology developed by a company called
3DV System acquired by Microsoft in June 2009 [34], specifically on the product
ZCam, a real-time range imaging camera. In [15] Microsoft announces the fact
that another Israeli company PrimeSense supplies the 3D sensing technology used
in Project Natal. PrimeSense is also working with ASUS to create a new device
called WAVI Xtion, a pc-compatible device similar to Kinect. The launch of this
Kinect-like device will be scheduled in the second quarter of 2011 [5].

Figure 3: WAVI Xtion. A motion sensing control device produced by ASUS.

From a software point of view the Kinect software technology is developed in-
ternally by Rare, a subsidiary of Microsoft Game Studios owned by Microsoft. In
December 2010, as reported in [16], PrimeSense released their own open source
drivers, along with motion tracking middleware called “Natural Interaction Technol-
ogy for End-user (NITE)". PrimeSense create with the collaboration of two two
other companies a not-for-profit organisation focused on certifying and improv-
ing interoperability of Natural Interaction (NI) devices called “Open Natural Inter-
action (OpenNI)". OpenNI is not only an organization but also a cross-platform
framework that provides the interface for both physical devices and middleware
components as described in [17].

Figure 4: OpenNI logo Figure 5: PrimeSense logo

2.1.3 Kinect Hardware and Specification

As you can see in Figure 6 Kinect is not a single piece device but it’s composed
by a lot of different components and technologies to offer to the user a new enter-
tainment experience that involves different senses.

8 background

Figure 6: Kinect disassembled. This Figure shows the result of a disassembling procedure
performed on the device by a specialized website.5

The Kinect is designed to be positioned below the video display and is mainly
formed by an horizontal bar of sensors connected to a small base with a motorized
pivot. The motorized base enables to change the vertical range of acquisition up
or down of ±28° as reported in [23]. The Figure shows the three main sensor of
the Kinect or better the “Kinect’s eyes": two cameras and an Infrared (IR) projector.
The first component on the left is the IR projector as illustrated in the Figure , the
central components is a Color Complementary Metal Oxide Semiconductor (CMOS),
a simple Red, Green and Blue (RGB) camera with a resolution of 640×480 32-bit
colour at 30 frames/sec and lastly on the right we have the IR CMOS or the IR
Receiver with a resolution of 320×240 16-bit depth at 30 frames/sec. The device
is also equipped with an array of microphones that permits the Kinect to receive
and recognize vocal commands. The multi-array microphone enables acoustic source
localization and ambient noise suppression. The four microphones are disposed in
a line, three of them in the left side and another in the right, all of them placed
below of the device.

Below we report the specification as descripted in [23]: the sensor has a viewing
angle field of 57° horizontally and 43° vertically, while the mechanical drive in the
base, as previously mentioned is capable of moving the sensor to 27° either up or
down.

2.1 kinect 9

Figure 7: Kinect sensors. This picture highlight all the sensors that are part of the Kinect,
like the 3D depth camera (IR projector and IR camera), the RGB camera, the
multi-array microphone and motorized tilt.

Table 1: Kinect Sensor Array Specifications[23]

Sensor item Specification range
Viewing angle 43° vertical by 57° horizontal field of

view
Mechanized tilt range (vertical) ±28°
Frame rate (depth and color stream) 30 frames per second (FPS)
Resolution, depth stream QVGA (320×240)
Resolution, color stream VGA (640×480)
Audio format 16-kHz, 16-bit mono pulse code modu-

lation (PCM)
Audio input characteristics A four-microphone array with 24-bit

analog-to-digital converter (ADC) and
Kinect-resident signal processing such
as acoustic echo cancellation and noise
suppression

10 background

If we want to give a definition on what Kinect is exactly, we can say it is an
infrared structured light 3D scanner. The PrimeSense diagram illustrated in Fig-
ure 8 explain how their reference platform works. The IR transmitter sends out
infrared structured light carrying encoded information in the form of varying light
patterns, a speckle pattern. When its IR sensor detects the returned signal, it looks
for deformations in the encoded pattern and the correlation against a reference pat-
tern at a known depth. From these changes it does calculations for determining
depth information and various characteristics of the objects and people that are
present in the Kinect detection field [29][12].

Figure 8: PrimeSense functioning diagram. This diagram illustrates how the PrimSense
platform works, in particular the interaction between the different sensors com-
posing the device. As we previously said Kinect includes this kind of technol-
ogy.

If we look at Figure 9 we better understand how the Kinect perform depth
detection. In the picture you can see the invisible pattern composed by the set of
speckle projected onto the environment by the IR projector and detected by the
IR receiver which builds the correspondent 3D model of the scene analyzed as
illustrated in Figure 11.

Another important issue to take care examining the hardware are the power
requirements. The Kinect requires 12 volts Direct Current (DC) to operate; it con-
sumes 12 Watts of power during operation. This is far greater than the 5 volts
and 2.5 Watts designed into the Universal Serial Bus (USB) port in most home
computers. This means the Kinect has an additional transformer type wall-plug
power supply as showed in Figure 10.

2.1 kinect 11

Figure 9: Kinect infrared light pattern. In this Figure is represented the light pattern
projected by the Kinect in the environment to perform depth detection.

Figure 10: Kinect power supply. As you can see the Kinect power supply has a specific
USB adapter (female) where to plug the Kinect and an additional male USB
plug that you have to insert in the PC.

12 background

2.1.4 Operating modes

In this section we will try to explain broadly how Kinect recognise and detect
skeleton information, gestures and vocal commands using the different components is
equipped. We don’t want to go into much technical details on the functioning of
each technology involved because this isn’t the target of this thesis. We already
mentioned in the last section some technical details regarding the functioning of
the device, like the fact that is based on an IR structured light technology. This
kind of technology uses specially designed light patterns projected onto objects
to collect 3D data about objects and people present in the environment. Hence,
we can claim the fact Kinect is to all intents and purposes a depth camera. To better
understand how the device can detect objects and people, we make a comparison
with normal cameras. They build and image transforming the light bounces on
objects in the colours that you see. A depth camera uses IR light to build the
same image but in this case each the colour of the pixels identifies how far is
this part of the image from the camera itself as illustrated in Figure11. We can
define the image built from the camera a depth image, the information contained
are more accurate and precise with respect to a conventional color image, hence
more sophisticated data analysis can be conducted offering the possibility to track
the body of individual people.

Figure 11: Kinect depth detection.. This picture indicates how a scene depth image can
be created observing a room with some people inside.

Speaking about body tracking, Kinect is not limited on simple body detection
but enables using some dedicated frameworks to locate individual joints and dif-
ferent body part. This is one of the most exciting capability the Kinect offers to
developers to create new interactive applications. In Table 2 is defined the playable
range where the device is able to perform a good skeletal tracking. In Figure 12 is
illustrated an example of skeletal tracking using OpenNI. We will see through this
thesis how the skeleton tacking can be used to change the way the user interact
with the computer.

2.1 kinect 13

Figure 12: Kinect skeletal tracking.. This figure shows a possible example of skeleton
tracking using OpenNI.

Table 2: Playable Ranges for the Kinect

Sensor item Playable range
Color and depth stream 4 to 11.5 feet (1.2 to 3.5 meters)
Skeletal tracking 4 to 11.5 feet (1.2 to 3.5 meters)

Kinect is a complete device because it offers also audio features, like acoustic source
localization, ambient noise suppression and using Microsoft Kinect SDK a simple form
of vocal command recognition. The four-microphone array is positioned bottom the
bar and simulate the behaviour of the ears. Having different acquisition points for
the sound is possible to understand the direction of the sound source analysing
the different instants when the signal arrive at each microphone in the array. An-
other positive improvement obtained using a microphone arrays with respect to a
single microphone is the fact that it can support more effective noise reduction and
Automatic Echo Cancellation (AEC) algorithms. In this thesis we focus our attention
on body detection, hence the audio part is not analysed in details but we made
some simple audio tests in laboratory to comprehend the potentiality of vocal
commands detection when we examined the Microsoft Kinect SDK.

Microsoft added the motor pivot to the Kinect in order to guarantee a good
flexibility and adaptivity in the different rooms and environments. The motor
and gears can tilt the device up and down with a range of 28°. Like in the case of
audio features we not explore this functionality in this thesis because the library
we chose to perform skeletral tracking doesn’t provide the moving features for
the device.

14 background

2.2 natural interaction

2.2.1 Introduction

NI refers to a concept whereby the interaction with devices is based on human
senses [17]. These new paradigms render external peripherals currently used to-
day, such as remote controls, keypads or a mouse obsolete. The Kinect can be
defined a Natural Interaction (NI) device, which operates in the context of Natural
User Interface (NUI), a new emerging metaphysical paradigm in Human Computer
Interaction (HCI). In 2006 Christian Moore founded a research community with
the aim of learning and sharing new HCI methods and concepts defined as NUI
technologies. The NI paradigm can be identified as particular instance of NUI be-
cause this field of research covers a lot of other different paradigms, pattern and
technologies. As descripted in [6], NUI is the next step in the evolution of the in-
terfaces following the objective of create more organic interfaces which are based
on more traditional human interaction paradigms such as touch, vision, speech and
most importantly creativity. The main goal of the NI paradigm is to transform the
legacy interfaces and devices used during the last years of technology evolution
in a more intuitive and naturally interaction without the need to wear particular
devices or learn complicated instructions to use them.

Figure 13: HCI evolution chart. This figure represents the evolution of the HCI paradigms
in the years.

As we previously mention NI is more focused on a set of particular type of
interaction and NUI approaches:

body motion tracking the analysis and interpretation of 3D data models en-
ables full body motion tracking and skeleton recognition locating to locate
individual joints and the different body parts;

hand gestures recognition where pre-defined hand gestures models are rec-
ognized and used to enable a new way to control devices;

2.2 natural interaction 15

speech and command recognition vocal commands trigger action execution
on the devices and can be integrated with the other paradigms of interac-
tion augmenting the set of possible commands that can be recognized and
executed.

In this chapter we will understand and examine all the aspects related to this
new paradigm of HCI through the analysis of the different types of interaction
involved and all the problems follows. We will try to define what a gesture can
represent and how we can recognize it.

2.2.2 Gesture

This dissertation [30] regarding NI defines gestures citing Turk as an expres-
sive, meaningful body motion with the intent to convey information or interact
with the surroundings environment. In [11] is defined a taxonomy to recognize
the various possible type of gestures: gesticulation, manipulations, sign language
gestures, deictic and semaphores. These last two forms of gesture taxonomy
are particularly meaningful from our domain of application because they well
describe the type of interaction the user can have with an IWB based on Kinect
technology. Gesticulation is as one of the most natural forms of gesturing and it
defines the kind of gestures that accompany conversational speech. This kind of
gestures does not require the user to perform any poses or to learn any gestures
like it happens for semaphores where pre-defined and recorded gestures are rec-
ognized. Manipulative gestures are another form of interaction we have to consider
because it is the most used actually to interact with computers, in fact it involves
the use of the mouse or stylus to move a cursor or manipulate a window. In a
3-dimensional environment manipulative gestures are applied to physical objects
which represent digital objects on the screen. Deitic gestures are pointing actions
that refer to objects in the context of the application domain like can be a user
pointing on a large screen in order to identify, locate or maybe move a specific
object. The semaphore pattern defines stylized static and dynamic gestures like
can be assuming a particular pose or waving a hand. We will discover in the next
chapters why this kind of gesture paradigm is particularly important to interact
with the Kinect.

2.2.3 Gesture recognition

Perform gesture recognition is not an easy task because there is a problem of dis-
ambiguation or rather is not so easy build effective heuristics or machine learning
algorithms that are able to understand what is a specific gesture from everything
else. Gesture analysis should isolate invariants in gesture characteristics to start

16 background

build a possible pattern to recognize a particular gesture. In some cases psycholin-
guistic studies are necessary to understand the context in which gestures are
performed. The gestures selected to interact and gain the control of the system
should not too similar otherwise they require extremely precise motion, difficult
to be replicated with a total loss of the intuitive and natural components that a
gesture can have. If we consider instead the other side of the same medal there’s
a clear necessity to identify some patterns and invariant to perfectly identify a
gesture, hence we have the need to give back to the user a precise feedback to
guide him or her in the process of disambiguation. As [30] suggests the fact that
gestures must be simple and intuitive motions, easy to replicate not increasing the
cognitive load of the subject. Give a real-time feedback of the user on the screen
establish a visual control loop to create the right feedback enabling the previously
mentioned disambiguation process. We will see in details in 4.6.1 a possible in-
stance of this type of feedback and visual loop.

2.2.4 Body Tracking

The role of body motion as described in [30] is forgotten because the devices
and sensors that a user has to wear reduce heavily the pleasure of moving into
space. Skeletal tracking enables a more intuitive and naturally interaction without
the need to wear particular devices or learn complicated instructions to use them.
Think about all the possibilities of application in the medical field for example
to help people during rehabilitation or like in our case in the educational sector
such as described in [10] where Kinect as a NI interface which provides full body
tracking is defined as an interactive technology that can enhance teaching and learn-
ing increasing the student participation and engagement in classroom activities
creating proper pedagogical opportunities for students to interact with content
knowledge. This feature offered by the Kinect can provide natural and intuitive
interaction patterns and as suggested in pedagogical strategies it can encourage
student participation eliminating every interaction barrier a complex device can
introduce.

2.2.5 Speech Recognition

As argued [30] the audio component of the interaction can be an important
source of information. The speech recognition process can have troubles in a noisy
environments, such as can happen in a crowded room during a university lesson,
and often requires microphones carried close to the speaker’s mouth. In order to
deal with not optimal situations, two main approaches can be implemented: the
first is the use of an array of microphones where audio devices contain a set of dif-

2.3 interactive whiteboards 17

ferent microphones and a digital signal processor that allows to perform beam for-
mation understanding where is a specific audio source, eliminating the other ones
with the help of algortims of acoustic noise suppression and echo cancellation. As
described in 2.1.3 its functioning is based on the relative latencies between signals
taken from different microphones. The second proposed solution consists in the
use of a directional microphone oriented towards the user. Audio analysis becomes
a powerful tool specially when it accompanies computer vision like happen for
the Kinect: the combination of both can enhance a lot the quantity of command
can be recognized or better can make the detection more reliable improving the
disambiguation process described in 2.2.3.

2.3 interactive whiteboards

2.3.1 Introduction

An Interactive Whiteboard (IWB), is a very powerful tool designed and thought
to provide quality education to the students. It is made up of a large interactive
board surface that usually connects to a computer and a projector. The projector
transfers the computer’s desktop onto the display’s surface and through the use
of either special pens or even fingertips the users control the computer. Typically
IWBs are used in classrooms, in the business world or anywhere people need to
make presentations or conduct a lesson mounted to a wall or floor stand[32].

Figure 14: Interactive Whiteboard (IWB). In this figure is presented a possible example of
a conventional IWB.

In this chapter we will describe and report the different technologies are the bases
of the various solution proposed. Once we will have a clear overview we will

18 background

make a focus on two interesting research project created at the University of Trento
to develop low-cost whiteboards. These projects are the source of inspiration for
this thesis and optimal tools of comparison.

2.3.2 Technology

IWBs may based on different type of several types of sensing technology to
track the interaction with the screen surface:

resistive Resistive whiteboards are composed of two flexible sheets of resistive
material separated by a small air gap. This touch-sensitive membrane is
used to detect where a student or teacher touches the board. When contact is
made to the surface of the touchscreen, the two sheets are pressed together,
registering the precise location of the touch that is used as input to the IWB
software. This technology allows one to use a finger, a special stylus, or any
other pointing device on the surface of the board[32][28].

electromagnetic (passive or active) These interactive boards feature an ar-
ray of wires embedded in the whiteboard surface interacts with a stylus
tip determining the pen coordinates with respect to the board surface. The
stylus can be passive, it not contains batteries, it simply alters electrical sig-
nals produced by the board or active, the pen contains an electromagnetic
coil formed by tiny magnetic fibers that implements the sensing technology.
In other words, the magnetic stylus activates the sensors in the board that
react and send a message back to the computer. For example, when the
stylus is pressed on the board, the board can signal a mouse click to the
computer[32][28].

capacitive The operating principle is the same as the electromagnetic type, the
capacitive type works with an array of wires embedded or behind the board.
In this particular case however the wires interact directly with the fingers
touching the screen determining the different coordinates when the finger
tips the board[32].

optical The whiteboard based on optical technologies can be categorized con-
sidering the different type of light involved or how the light interact with
the board to detect the finger or pointer position:

infrared light This kind of optical board is based on attaching IR scan-
ning devices to an existing ordinary whiteboard or flat surface. It uses
an IR light and a triangulation algorithm to determine the location of a
stylus on the board. These scanning devices are light and portable and
can be used with different types and sizes of ordinary whiteboards[32].

2.3 interactive whiteboards 19

laser light The operating principle in this case is very similar to IR scan-
ning devices but in this case the IR lasers are directly mounted in the
top corners of the board that detect the marker movement. They re-
quire the use of special passive reflective pens and not emitter like in
other cases, each of them has a unique encoded reflective collar used
to reflect the laser beam back to the source in a way that stylus position
can be easily triangulated[32][28].

ftir Frustrated Total Internal Reflection (FTIR) is a simple technique enables
to build robust boards at a minimum of engineering effort and expense,
in fact, this technology is based on the fact that pressing with a finger
on a surface where IR light bounces causes a disruption in the internal
reflection detected by cameras and transformed in coordinates [7][32].

camera pen and dot pattern This technology is licensed and propri-
etary better known as “Anoto" technology. The IWBs based on this
kind of approach have a wireless active stylus which contains an IR
camera that reads the microscopic dot pattern embedded in the writ-
ing surface. The pen is able to recognize the exact point where is on
the board uploading the detected coordinates via wireless to a pc. The
accuracy is high since the coordinates are usually fixed at about 600

dots per inch[32][2].

wii remote Now we will describe the most inspirational technology re-
lated to this thesis. At University of Trento, we will discover in the
next sections, there are two main research projects studying and devel-
oping solution based on this particular technology to build a low-cost
IWB[24]. This proposed new way to emulate an Interactive Whiteboard
consists in a Wii Remote connected to a computer through its Bluetooth
connection capabilities. A specific designed open-source software in-
stalled on the computer transform in possible coordinates of the mouse
on the screen the IR light detected by the Wii Remote which receives a
beam projected from an IR-Pen, a special pen containing a momentary
switch and IR Light Emitting Diode (LED) battery-powered, pointed to
any surface usually where is projected the computer desktop, like can
be a desk, a wall, an existent whiteboard and so on. The Wii Remote
has a very accurate IR light tracking camera. Once calibrated, the Wii
Remote detects a mouse click at the screen location of the stylus. This
type of solution was first adapted for use as an IWB by Johnny Chung
Lee[13][32].

dst Dispersive Signal Technology (DST) introduced in 2002 by 3M[1], it determines
a touch by measuring the mechanical energy (bending waves) within a sub-
strate created by a finger or stylus touching the surface of the glass, which

20 background

is detected by corner-mounted sensors. Piezoelectric sensors positioned in
the corners on the backside of the glass convert this smeared mechanical
impulse into an electrical signal. The distance from each sensor determines
a different smearing in the signal enabling the possibility to individuate the
exact source position of the signal. Using advanced digital signal process-
ing and proprietary algorithms, we are able to apply dispersion correction
algorithms which analyze the signals and report an accurate touch[32].

ultrasonic We can have two type of ultrasonic whiteboard: the first using an
active pen emitter where ultrasonic sound is emitted by the stylus whenever
it is pressed against the board’s surface. Microphones located at different
positions along the board pick up the sound and triangulate the position[27].
Sometimes this approach can be combined using in addition an IR light. The
second one using a totally different approach using a passive stylus and
two ultrasonic transmitters in two corners and two receivers in the other
two corners. The ultrasonic waves are transmitted by the surface of the
whiteboard. Very small marks in the whiteboard borders generate reflecting
waves for each ultrasonic transmitter at different and recognizable distances.
When the user touch the board with a finger or a pen it causes a suppression
of these point waves, this fact is detected and the receivers communicate
what happen to the controller.

2.3.3 WiiLD

In this section we examine one of the technologies relative to the IWB imple-
mentation mentioned before which can be a forerunner in the introduction of
gaming devices as a concrete tool to support teaching and learning activities.

Wiimote Lavagna Digitale (WiiLD) is a low cost technological tool with huge
potentialities. Johnny Chung Lee6 demonstrated in 2007 how is possible to emulate
an IWB using a Wii Remote, the controller of the famous Nintendo’s home console
called Wii [13][24].

The fundamental elements composing the WiiLD control system are:

• a PC with an active Bluetooth connection;

• a projector;

• a WiiMote, the Wii’s primary controller;

• an IR pen, it is a special pen with a momentary switch, power source and
an IR emitter;

6 Johnny Chung Lee is a visionary HCI researcher currently working at Google. He became very
famous in 2007 for his Wii Remote head tracking project [13]. He was named one of the world’s top
35 innovators under 35 in 2008.

2.3 interactive whiteboards 21

• a surface that can be turned into an IWB;

• a tracking software.

It is possible to use a sensor bar and a second WiiMote, which has the role of
pointing device.

Operating mode

As described in [24] the WiiLD operating mode is very simple, in practice we
obtain computer’s desktop projection onto the surface where users control the com-
puter using the IR pen. The stylus positioned in the proximity of the surface emits
the IR light, imperceptible to the human eye but detectable using the Wii Remote
controller as receiver of the IR light. The latter transmits the detected signal to
the computer using the Bluetooth connection as illustrated in Figure 15. The soft-
ware running on the Personal Computer (PC) receive the transmitted data by the
IR receiver and perform some computation, for example positioning the mouse
cursor in the detected position with respect to the screen. A preliminary phase
of calibration enables to map the physical projection space with the logic position
on the desktop (the visible screen portion). In this way it is possible to interact
with the PC using and moving the optical IR pen into the projection space, obtain-
ing a new example of IWB. The commercial version of IWB are sensible devices
creating the same mapping operation between a recorded position on the board
and a virtual position on the desktop of the computer.

Figure 15: WiiLD operating mode schema. In this picture you can see the logical operat-
ing mode of the IWB solution proposed using the Wii Remote technology.

The technologies used inside commercial IWBs are completely different and
are based on various models as we argued in the previous section describing
the IWB’s technologies. The pointing device used in this case can be a specific

22 background

designed pointer, a finger or simply a passive device. The software associated
with the device is a key component because it has a fundamental role, in fact it
guarantees the position detection and the relative mapping, but it can also add
additional resources to teachers offering annotation and writing capabilities on
the desktop or a system for preparation and filing of the lessons or whatever
other specific tools to support the different educational activities.

This project is already a reality in the Italian school system, especially in the
province of Trento because a lot of school are searching some possible solution to
adopt as many as possible low-cost IWBs. At the University of Trento exists an ap-
posite project, the “Wii4dida"7 project, designed to introduce the experimentation
and the real utilization of the WiiLD.

2.3.4 WiiLDOS

WiiLDOS8 is a free operating system created and designed to enhance and facilitate
the utilization of the Wii Remote agile whiteboard. This is not a simple software but
it is a complete free GNU Linux distribution live or installable. It is conceived
to be used in combination with IWBs or Tablet Pcs for educational purpose and
activities. WiiLDOS is a new operating system based on Ubuntu9 distribution, it
offers a modular, complete and simple approach, it is free and open-source and
available for all the users and teachers want to change and update the way they
conduct their lessons using as base an IWB including an entire suits of programs
conceived to this particular purpose. This distribution is designed to provide a
set of software dedicated to teaching activities and offer a better support to tools like
the WiiLD or Kinect because it proposes a emphsimplified interface and intuitive
commands and actions that can enhance the integration with technologies that
doesn’t have in the precision and complexity their point of strength[18].

History

WiiLDOS is a Linux distribution derived from Lubuntu designed and devel-
oped starting from the third quarter of 2010 by Pietro Pilolli, a software developer
and researcher within the Service Oriented Architecture (SOA) Research Unit at
Fondazione Bruno Kessler (FBK)10 in Trento, Italy. The first version was released in
December 2010 based on Lubuntu 10.04, the latest stable is the version 1.04 pub-
lished in June 2011, and the latest alpha is the version 1.07 released in November
2011.

7 http://sites.google.com/site/wii4dida/
8 http://sites.google.com/site/wiilavagnadigitale/wiildos
9 http://www.ubuntu.com/

10 http://www.fbk.eu/

2.3 interactive whiteboards 23

Figure 16: WiiLDOS GNU/Linux Distribtuion. This figure show the WiiLDOS install
screen.

Usability

The interface proposed by WiiLDOS showed in Figure 17 is subdivided in tabs
containing large icons to facilitate the usage as a “whiteboard". Performing a single
click on the top bar is possible to choose a tab and inside it select a particular
program as we previously highlight the fact that this operative system is focused
on an utilization by devices with a simple usability and poor precision. If you want
to insert some text you can use the Florence virtual keyboard11, Dasher12 or Eviacam13

using your head. You can utilize the panel for the handwriting recognition called
Cellwriter14[18].

Portability

WiiLDOS is free software, hence it can be copied or redistributed without re-
striction to the students. Each student can install WiiLDOS on a USB flash drive,
and thanks to the persistent modality it is possible to personalize the distribu-
tion adding additional software and programs using the Ubuntu packet manager
called Synaptic15 and save data and modification inside the flash drive. In this way
the student can use the same software utilized at school and saving on the same
USB key the work and production made at home or at school. This specific fea-
tures offered WiiLDOS is compatible with the portability provided by the WiiLD
tool allowing an easy transportation and utilization everywhere[18].

11 http://florence.sourceforge.net
12 http://www.inference.phy.cam.ac.uk/dasher/
13 http://eviacam.sourceforge.net/eviacam.php
14 http://risujin.org/cellwriter/
15 https://help.ubuntu.com/community/SynapticHowto

24 background

Figure 17: WiiLDOS Interface. In this pictures is illustrated the WiiLDOS interfaces show-
ing tabs and programs, in addition you can see the Florence virtual keyboard.

Lightness

As reported in [18] WiiLDOS propose an implementation and development
oriented to save as mush as possible computational resources in order to be used
on old computers, in fact the minimal system requirements requested are:

• Pentium 2 or equivalent;

• 128 MB of Random Access Memory (RAM);

• 2 GB of disk space;

• a graphic card and a monitor with resolution at least 800×600.

Of course, the developer suggests to have a more reactive system and better
response times these specific characteristics:

• Pentium 3 or equivalent;

• 512 MB of RAM;

• 4 GB of disk space;

• a graphic card and a monitor with resolution at least 1024×768.

We will discover in the next sections the minimal and suggested system require-
ments needed to run Kinect based application are unfortunately much more than
this.

2.3 interactive whiteboards 25

Licensing

This modified operating system derived from Lubuntu is freely usable, copyable
and redistributable for a non commercial utilization. For a different purpose of
utilization a write authorization from the authors is needed containing a double
license for commercial use.

3 K I N E C T F R A M E W O R K S

3.1 openni

3.1.1 Introduction

Open Natural Interaction (OpenNI)1 is an industry-led, not-for-profit organization
founded in November 2010 by:

primesense An Israeli company founded in 2005, it is and industry leader
leader in NI and 3D depth sensing solutions. It provides the 3D sensing
technology used in the Microsoft Kinect.2

willow garage Willow Garage is a robotics research lab. It develops hardware
and open source software for personal robotics solutions.3

side-kick This company is a leading game developer and publisher specializing
in motion games that use human gestures as the game controllers.4

asus ASUS joins the OpenNI organization as an industry member providing
hardware for purchase to promote NI applications. ASUS produce a Kinect-
like device called WAVI Xtion.5

appside Founded in 2011, AppSide is the first end-to-end content marketplace
for motion-controlled entertainment devices.6

The main aim of the organization is to certify and promote the compatibility
and interoperability of NI devices, applications and middleware accelerating the
introduction of NI applications into the marketplace. As a first step on the way
to achieve the goal, the organization has made available a multi-language, cross-
platform open source framework. This framework defines a set of interfaces for
writing applications utilizing Natural Interaction (NI). The main purpose of the
framework as reported in [17] is to offer a standard Application Programming In-
terface (API) that enables communication with the both hardware and software.

1 http://www.openni.org
2 http://www.primesense.com/
3 http://www.willowgarage.com/
4 http://www.sidekick.co.il/
5 http://www.asus.com/
6 http://www.app-side.com/

27

28 kinect frameworks

OpenNI’s API provide a set of API to be implemented by the various sensors and
another set of API for the other side that is implemented by the middleware com-
ponents: the software components that analyze all the data collected from the
scene and elaborate it. For example, in this specific case NITE frameworks receive
the data collected by the Kinect and elaborating it performing skeletral tracking of
the user 3D model. OpenNI can be represented as you can see in Figure 18 using
a three-layered view. The first layer on top represents the software that use the APIs
offered by the framework. The middle layer represents OpenNI itself, providing
communication interfaces for both the sensors and the middleware components.
The bottom layer shows the hardware devices that captures and acquire data ob-
serving the environment.

Figure 18: OpenNI Architecture. The OpenNI Framework is an abstract layer that pro-
vides the interface for both physical devices and middleware components.

OpenNI is designed and built according with the philosophy “write once, deploy
everywhere". The level of abstraction offered by this kind of architecture enables
applications to be written and ported with no additional effort to operate on top
of different middleware modules and sensor types. Using OpenNI is possible to
write applications which use informations regardless of which sensor device has
produced them, and vice versa offers the possibility to built new sensors that
power any OpenNI compliant application.

3.1.2 Modules

One strength point of the framework that provides good flexibility and adap-
tivity is the modular architecture design, in fact the API enables the registration
of multiple components in the framework. These components are referred to as
modules, they can produce data or consume and process data generated by other

3.1 openni 29

components. Hence, you can combine the modules in different way creating new
interaction patterns. The current supported sensor modules are:

• 3D sensor;

• RGB camera;

• IR camera;

• Audio device (a microphone or an array of microphones).

The current supported middleware modules are:

full body analysis middleware A software component that processes data
generated by the different sensors and creates body model structures like
data describing joints, orientation, center of mass, and so on.

hand point analysis middleware A software module that processes sensory
data and elaborates the location of a hand point.

gesture detection middleware A middleware component that identifies pre-
defined gestures (for example, a waving hand or a push) and throws specific
events to alert the application.

scene analyzer middleware A structured component that analyzes the envi-
ronment in order to produce information as:

• the separation between the figures in the foreground of the scene and
the background;

• the coordinates of the floor plane;

• the individual identification of figures in the scene.

3.1.3 Production nodes

OpenNI defines a production node as described in [17]. It has the key role of
producing and generating meaningful 3D data for NI-based applications, which can
be a complex task. Typically, this begins by having a sensor device that produces
is a depth map, a simple form of raw data, where each pixel is represented by its
distance from the sensor. Specific dedicated middleware software elaborates this
raw data, and produces a higher-level output, which can be understood and used
by the NI applications. Each production node implements the logic of the function-
ality that relates to the generation of the specific data type. The API related to the
production nodes only defines the interface provided for the applications.

In case when for example the application wants to track the motion of a human
figure in a 3D scene as illustrated in Figure 12. This requires a user generator

30 kinect frameworks

that provides body data for the application. This specific production node obtains
its data from another production node, a depth generator. A depth generator is
implemented by a sensor, which takes raw sensory data from a depth sensor (for
example, a stream of X frames per second) and outputs a depth map. In principal,
each production node is a standalone unit that generates a specific type of data, and
can provide it to other production node, or directly to the application itself. Usually,
production nodes always use determined production nodes to analyse lower level
data types, using it to produce higher level data for the application.

We can have different production nodes types as we mentioned above: sensor-
related and middleware-related production nodes. Below are reported some of
the currently sensor-related production nodes supported in OpenNI:

device A node that represents a physical device (for example, a depth sensor, or
an RGB camera). The main role of this node is to enable the possibility to
configure the device.

depth generator This node should be implemented by any 3D sensor that
wishes to be certified as OpenNI compliant and has the capability to generate
a depth-map.

image generator This kind of generator identifies a node which produce
coloured image-maps. This node should be implemented by any color sen-
sor that wishes to be certified as OpenNI compliant.

ir generator Any IR sensor that wishes to be certified as OpenNI compliant
should implement this production node.

audio generator A node that generates an audio stream. This node should
be implemented by any audio device that wishes to be certified as OpenNI
compliant.

The middleware-related production nodes which can be registered within the
framework are:

gestures alert generator Generates callbacks to the application when spe-
cific gestures are identified.

scene analyzer Analyses a scene, including the separation of the foreground
from the background, identification of figures in the scene, and detection of
the floor plane. This type of node produces as output a labelled depth map,
in which each pixel holds a label that states whether it represents a figure,
or it is part of the background.

hand point generator It supports hand detection and tracking. This node
generates provide alerts when a hand point (meaning, a palm) is detected,
and when a hand point currently being tracked, changes its location.

3.1 openni 31

user generator This is one of the most important generator because it elabo-
rates a representation of a full or partial body in the 3D scene.

For recording purposes, the following production node types are supported:
recorder, player and codec.

3.1.4 Production chains

In previous section we described the capability of OpenNI to defines production
nodes that interact to produce high-level data consumed by the application. This
kind of interaction can be defines as production chain. In the example we made
talking about skeletal tracking, the user generator is reliant on the depth generator
in order to produce the required body data. Hence, OpenNI creates the possibility
of build different production chains composing various implementation of the same
production node offered by different vendors on the market, like depicted in
Figure 19.

Figure 19: OpenNI Production Chains. This illustration displays four optional production
chains.

3.1.5 Capabilities

OpenNI supports the flexibility of the registration of multiple middleware com-
ponents and devices. Non-mandatory extensions are defined by the OpenNI API.
These optional extensions to the API are called capabilities and reveal additional
functionality, enabling providers to decide individually if a production node can
supports a specific capability. A specific set of capabilities is released, with the
option of adding further capabilities in the future. The application can specify
the capabilities that should be supported by the modules composing the chain
as criteria when enumeration of the various production chain is requested. Only
modules that support the requested capability are returned by the enumeration.

The currently supported capabilities are:

32 kinect frameworks

alternative view This capability enables any type of map generator (depth,
image, IR) to transform its data to appear as if the sensor is placed in another
location.

cropping Cropping can be very useful capability for performance boosting. It
enables a map generator (depth, image, IR) to output a selected area of
the frame as opposed to the entire frame. When cropping is enabled, the
size of the generated map is reduced to fit a lower resolution (less pixels).
For example, if the map generator is working in Video Graphics Array (VGA)
resolution (640×480) and the application chooses to crop at 300×200, the
next pixel row will begin after 300 pixels.

frame sync It allows frame synchronization of two different sensor to permit
their frames arrive at the same time.

mirror Mirroring is one of the most used capability, also implement by Kinect.
Mirroring is useful if the sensor is placed in front of the user, as the image
captured by the sensor is mirrored, so the right hand appears as the left
hand of the mirrored figure.

pose detection To start user skeleton calibration the user is posed in a specific
position.

skeleton This capability is the most important for this thesis because is the core
of the entire application developed. It enables a user generator to output the
skeletal data of the user. This data includes the location of the skeletal joints,
the ability to track skeleton positions and the user calibration capabilities.

user position It allows to detect the user position enabling a depth generator
to optimize the output depth map that is generated for a specific area of the
scene.

error state A capability used for error status reporting, meaning that on a
practical level, the node may not function properly.

lock aware It enables a production node to be locked outside the context bound-
ary.

3.1.6 Licensing

OpenNI is written and distributed under the Lesser General Public License (LGPL)
which means that its source code is freely-distributed and available to the general
public. You can redistribute it and/or modify it under the terms of the LGPL
license as published by the Free Software Foundation, either version 3 of the
License, or any later version.

3.2 nite 33

Modules and applications

OpenNI provides a simple licensing mechanism that can be used by modules and
applications to ensure that modules are only used by authorized applications. It
also provides a global registry for license keys, which are loaded whenever a
context is initialized. This means that a module is accessible only if the license is
provided by the application using the module. A license is composed of a vendor
name and a license key.

3.2 nite

3.2.1 Introduction

Natural Interaction Technology for End-user (NITE) is the middleware that trans-
lates the world in 3D represented using depth maps into meaningful data. The Kinect
sensor observes the scene, while NITE acts as the detection engine that is able to
tell apart the user body from the surroundings environment capturing eventual
interaction. The framework offers different features like user identification and
movement detection, as well as a set of framework APIs for implementing NI con-
trols that are based on user gestures. NITE works over OpenNI providing software
implementations for all the OpenNI module referred as “NITE algorithms", this
computer vision middleware layer is explained in details in the next subsections
[21][20].

The framework stack is composed by different layers like depicted in Figure 20:

• starting form the bottom, we have the OpenNI infrastructure with all its
interfaces on the both side with sensor’s driver and with the middleware
software. OpenNI supports the registration of different modules, NITE im-
plements gesture and hand generator, scene analyzer and user generator per-
forming skeletal recogniton;

• the second layer is composed by the previously mentioned NITE Algorithms,
which is a set of different computer vision algorithms which are able to pro-
cess the depth data transforming it in meaningful informations and models
that the NITE controls can understand;

• the next level is represented by the NITE controls, an application framework
that provides gesture identification and UI controls to enable application
writers to design new application following the flow according with infor-
mations, event and action generated by the NITE Algorithms.

• the layer on top of the depth data processing stack is composed by the NI-
based application. This application can receive callbacks from NITE controls

34 kinect frameworks

Figure 20: Nite Layered View. A simply overview of the depth data acquiring and elabo-
ration process.

or interact directly with OpenNI to have access to the data produced by the
sensor.

3.2.2 NITE Algorithms

NITE Algorithms represented the first layer of data process elaboration compos-
ing the NITE framework stack. This middleware layer use different computer vi-
sion algorithms to process the stream of raw data coming from the device driver
through OpenNI architecture. These algorithms are able to segment the scene
separating the users from the surroundings environment and objects, detect hand
points and track specific pre-defined gestures and lastly perform a full body track-
ing to examining the current user pose highlighting the different joints forming
the human body[19][20].

Gesture Control Algorithms

As described in these notes [19] you can gain the control using specific pre-
defined gestures inside the field of view of the Kinect. To start you need to perform
a special gesture called focus gesture. A focus gesture can be a wave gesture or a click

3.2 nite 35

gesture. In order to perform a wave gesture is needed to change the hand direction
suddenly from left to right and viceversa within a timeout, however, in order to
perform a click gesture is needed to push the hand towards in the direction of the
sensor and immediately pull his or her hand back. Following the suggestions
reported in [19] you can gain the control until you release the control according
to the application flow leaving a pre-defined space or when the hand point or
the user figure is lost. Different type of gestures can be performed as we have
previously mentioned:

• click;

• wave;

• swipe left,right, up and down;

• raise a candidate hand;

• hand candidate moved.

User Segmentation Algorithms

The set of algorithm dedicated to user segmentation help the developer to iden-
tify and track the user in the scene. The notes [19] indicates that a user can be
marked and identified with a persistent ID producing a label map giving the user
ID for each pixel composing his figure. The skeleton tracking algorithm start from
this label map to generate a body skeleton. If user is lost his ID is freed and a
new ID can be assigned to user in a further detection.

Skeleton Tracking Algorithms

Finally we examine one of the most interesting feature offered by the NITE
framework the skeleton tracking. The guide reported in [19] indicates as basic
assumption to create an ideal environment where the tracking can be performed
in the best way a scene without occlusion by objects or other users and an ideal
distance of the body from the device around 2.5 meters. A calibration process is
used to adjust the skeleton model to the user’s body proportions and starts the
pose tracking. The user should staying in the pose indicated in Figure 21 facing
the Kinect for a few seconds, this specific pose is defined in the documentation
the “Psi" pose.

The body tracking produce as output positions and orientations of the skeleton
joints. In [19] is highlighted the fact that exits a clear difference between posi-
tions and orientations. Summarizing this concept the tracking model used by the
NITE’s API only consider the joint position without take care of the joint angles
because using an angle-driven computation can introduce too much noise with

36 kinect frameworks

Figure 21: NITE Calibration Pose. The figure represented indicates a stylized body pose
the user has to assume to start the skeleton calibration procedure.

respect to using the joint position due to the fact we can have a huge variation in
the length of the different body segments. The framework in this sense can have
difficulties to detect a user “twist": the feature extractor in some cases tries to give
its best guess. Hand and foot joints orientation is derived from elbow and knee
orientation.

Figure 22: NITE Joint Definitions. This figure illustrates the coordinate system and joint
definitions used by NITE in mirrored mode.

The Figure 22 illustrates the coordinate system and skeleton representation for
a user facing the sensor. As you can probably imagine the definition of “left"
and “right" side is very important. NITE has already predicted this possibility
allowing a mirrored mode where you see on the screen a mirror-like reflection of
yourself, hence if you move your right part of the body the right side of the
skeleton model on the screen moves as well.

3.2 nite 37

The notes in [19] reports some knowing issues we noted during our test and
research phase, we want to mention them because we want to explain clearly the
system behaviour because sometimes it seems unpredictable and not so precise
as we expected. For example, if you take the arm close to your body the tracking
is not stable and both arms can be mixed up or the fact that leg tracking is quite
unstable at the moment, the head must be visible, sometimes you need to assume
a “simple" pose facing the device to resume a stuck in the tracking session or the
fact that sometimes fast motion detection may cause a tracking failure. For a
complete list see [19].

3.2.3 NITE Control Paradigms

These layer of the framework is a set of API that enable developers to imple-
ment the flow of the application according to hand points generated by NITE
Algorithms. NITE Controls framework identifies specific gestures, and provides a set
of UI controls that are based on these identified gestures.

Session Management

As already described when we talk about gesture control algorithms in 3.2.2
the frameworks needs to define a time during which the tracking of the hand is
enabled, hence a session is defined as a state in which the user is in control of
the system using his or her hand. The user to start gaining the control needs to
perform a pre-defined gesture labelled as focus gesture. When this specific gesture
is recognized starting form this point the hand of the user is tracked until it leaves
the detection field of the Kinect. For a more detailed explanations and session state
description consult [21].

Point Controls

point control are a set of objects that receive a stream of the current active hand
points, analyse it and accordingly to the hand points’ behaviour, in the case a
meaningful behaviour is recognized they perform some action. Any point control
has some events in common with the others, for example when a point is created,
moved, destroyed and so on. Now we will examine each point control trying to
highlight what is the meaningful behaviour recognized using this particular point
control in a way that we can shows all the possible gestures can be detected.

push detector This point control is designed to recognize a push gesture per-
formed by the currently tracked hand point. A push gesture is detected when a
certain velocity is reached in an angle close to the Z-axis for a certain period of

38 kinect frameworks

time, in a few word is a push in the direction of the Kinect and back again. This
gesture is typically used for selecting and picking items [21][20].

swipe detector This point control attempts to recognize hand point motion
as a swipe gesture, either up, down, left or right. A swipe motion is a short move-
ment in a specific direction, followed by the hand resting. For example, during a
presentation, swipes to the left and right can be used to move from one slide to
the next one [21][20].

steady detector The steady detector try to recognise when a hand point has
been still standing for some interval of time. Steady means that the user doesn’t
move the hand in any direction, the hand is steady in front of the body. The
detection takes into account that a person’s hand may still slightly move when
held steady. The steady detector uses the variance of the hand point within a
specific time frame. Steady is mostly useful for the detection of a resting hand
between gestures, to clearly signal that one gesture has ended and another one
can potentially start [21][20].

wave detector This point control attempts to recognize hand point movement
as a wave gesture like indicated in Figure 23. A wave is a number of suddenly
direction changes from left to right and viceversa within a timeout. By default, four
direction changes are needed to identify a wave [21][20].

Figure 23: NITE Wave gesture. This Figure illustrates a possible wave gesture.

circle detector The circle detector attempts to identify hand point move-
ment as a circular motion. This point control needs a full circle clockwise or anti-
clockwise as represented in Figure 24 in order to detect the movement as a circle
[21][20].

selectable slider 1d This point control tries to detect hand point movements
along any one of the 3 sliding axes: x (left-right), y (up-down) or z (close-far). This

3.2 nite 39

Figure 24: NITE Circle gesture. This Figure illustrates a possible circle gesture performed
testing the examples supplied with SimpleOpenNI library, a OpenNI and NITE
wrapper for Processing.

kind of action is defined a slider. This point control provides a value between 0

and 1 for each frame indicating where the hand point is relative to the preset
ends of the slider. In addition, it is possible to define selectable areas dividing
the sliding zone equally into a number of areas, where each area defines a single
selectable item in the slider. As you can imagine this solution can be used to
implement a sort of menus, with each item being a single menu option. [21][20].

selectable slider 2d This point control tries to recognize an hand point
movement on a predefined X-Y plane. The control provides two values between 0

and 1 for each single frame indicating where the hand point is comprised in both
X and Y axes relative to the ends of the slider. This specific point control also
enables dividing a virtual plane into equal areas. Each area defines a single se-
lectable item in the virtual plane. The user can select a particular item performing
a push gesture. It allows the recognition to specific events related to item selection
such as when the hand is over a different item, when that item is selected [21][20].

3.2.4 Licensing

NITE middleware framework is proprietary. It is a licensed under a free license
with a specific limitation to the use only with a PrimeSense chip. Using NITE
with any other 3D sensor breaks the licensing agreement. The Kinect contains
PrimeSense PS1080-A2 image sensor processor, hence you can use the framework
inside commercial software.

40 kinect frameworks

Figure 25: NITE Selectable Slider 2D. This Figure illustrates an instance of the 2D se-
lectable slider implemented in SimpleOpenNI library, a OpenNI and NITE
wrapper for Processing.

3.3 kinect for windows sdk beta

3.3.1 Introduction

Kinect for Windows Software Development Kit (SDK) Beta7 is the programming
toolkit provide by Microsoft Research to application developers as a starter kit
enabling an easy access to the capabilities offered by the Microsoft Kinect device
to develop creative and rich experiences applications running on the Windows 7

operating system. The Kinect for Windows SDK Beta includes drivers for using
the sensor with a Windows-based PC, rich APIs and device interfaces including
technical documentation and source code samples. This framework is designed
and conceived for developers who build applications with C++, C#, or Visual
Basic by using Microsoft Visual Studio 2010

8.

3.3.2 Features

In this section we will present all the features and capabilities provided by the
Kinect for Windows Software Development Kit (SDK) Beta even if we chose to base
our development on the OpenNI-NITE framework. We tested the library to have
a global overview on all the possible Kinect-driven development systems.

raw sensor streams It enables receive and access raw data streams generated
from the depth sensor, color camera, and four-element microphone array.

7 http://kinectforwindows.org/
8 http://msdn.microsoft.com/en-us/vstudio

3.3 kinect for windows sdk beta 41

skeletal tracking It offers the capability as depicted in Figure 26 to track the
skeleton 3D model of one or two people within the Kinect field of detection
allows the creation of gesture-driven applications. If you want to better
understand how this framework performs the tracking, the development
team of the framework published this [25].

advanced audio capabilities The frameworks also include some audio pro-
cessing capabilities providing sophisticated acoustic noise suppression and
echo cancellation, beam formation to identify the current sound source. It
supports the integration with the Windows speech recognition API.

Figure 26: Skeletal Viewer Walkthrough using Kinect for Windows Software Development
Kit (SDK) Beta.. This figure shows ones of the source code example provided
with the Kinect for Windows Software Development Kit (SDK) Beta relative to
skeleton tracking capabilities offered by the Kinect.

We tested in the research laboratory the framework capabilities and all the func-
tionalities offered even though they aren’t defined in our domain of application
to better understand what a device like Kinect can offer opening new possible
scenarios for the future but we decided to not introduce and use in our pro-
posed implementation the Kinect for Windows Software Development Kit (SDK)
Beta for various motivations. We will better analyse and comprehend the main
differences between Kinect for Windows Software Development Kit (SDK) Beta and
OpenNI-NITE framework in 3.5.

3.3.3 Licensing

Kinect for Windows Software Development Kit (SDK) Beta is designed for non-
commercial purposes only; a commercial version will be available in early 2012

as reported in the website of the framework.

42 kinect frameworks

3.4 others

3.4.1 Introduction

In this section we will make a brief recap on the others most known and famous
frameworks used to interact with the Kinect.

3.4.2 OpenKinect - Libfreenect

OpenKinect9 is an open source library developed by an open community of over
2000 members with the main goal of creating the best possible suite of appli-
cations for the Kinect. Their primary focus is the development of the libfreenec
software which includes all the code necessary to start develop application with
the Kinect sensor. The library includes a set of cross-platform APIs that works
on Windows, Linux, and OS X with a large set of bindings for the most com-
mon programming languages and platform like C, C++, Java, Python and so on.
Libfreenect is the core library for accessing the Microsoft Kinect and enables ac-
quiring data from RGB and depth camera, motors, and led. OpenKinect operates
at low-level and derives from the initial, reverse-engineered Kinect driver with
respect to OpenNI/NITE which is developed by PrimeSense, the creator of the
depth sensing technology at the base of the Kinect functioning. It doesn’t offer the
possibility to have specific 3D data models for skeletal tracking or gesture recog-
nition, hence we decide to not consider it in our work. We can define OpenKinect
more a driver than a middleware framework.

Licensing

The code contribution to OpenKinect are available under an Apache 2.0 or
optional GNU is Not Unix (GNU) General Public License (GPL) v2 license.

3.4.3 FAAST

Flexible Action and Articulated Skeleton Toolkit (FAAST)10 is a middleware frame-
work to facilitate the integration of full-body control with games and Virtual Re-
ality applications developed by the “MxR" team at the University of Southern
California Institute for Creative Technologies starting from December 2010. The
framework relies upon OpenNI described in section 3.1 and NITE described in
section 3.2 to track body motion using the Microsoft Kinect as you illustrated in
Figure27. The toolkit can also emulate keyboard input triggered by gestures or body

9 http://openkinect.org
10 http://projects.ict.usc.edu/mxr/faast/

3.4 others 43

postures allowing the user to add custom body-based control mechanisms to the
existing video games or applications. FAAST also enables mouse control from a
front position with respect to Kinect. It also includes a custom Virtual Reality Pe-
ripheral Network (VRPN) server to stream and diffuse the user’s skeleton over a
network, allowing clients and applications to read the skeletal joints as trackers.
The preliminary version of FAAST is currently available for Windows only. This
is one of the big motivation why we decide to not use this proposed solution.

Figure 27: FAAST. In this figure is presented the FAAST software interface as it appear
to the user.

Licensing

FAAST is free to use and distribute for research and non-commercial purposes.
If you want to use it for commercial purposes you need to contact the develop-
ment team.

3.4.4 ROS OpenNI

Robot Operating System (ROS) Kinect11 stack wraps the OpenNI drivers to inte-
grate the Microsoft Kinect with ROS, as well as higher level libraries like skeleton

11 http://www.ros.org/wiki/kinect

44 kinect frameworks

and gesture tracking. Robot Operating System (ROS) is a huge set of libraries and
tools provided to create robot applications. This driver provides the full capabilities
of the sensor, including in-sensor registration for RGB and depth camera, and full
audio support. This driver supports Linux, OS X, and Windows. This framework
is at the basis of the famous “MIT Kinect Demos"12, you can see an example in
28, it has good performance and very powerful but we didn’t want to be limited
to work only in the ROS environment, in addition it’s very huge, quite dispersive
and focused on different purpose with respect to our objectives of build a more
lightweight and simple solution.

Figure 28: MIT Kinect Demos - Minority Report Interface. A famous demo created ex-
tending ROS by some MIT students.

Licensing

All the ROS core code is licensed under Berkeley Software Distribution (BSD) and
also the ROS OpenNI is under BSD license.

3.4.5 As3Kinect

The as3Kinect13 project is a particular framework that acts like a socket server;
it reads or receive data from the Kinect and sends that data over the network to
an ActionScript client. This application is known as the as3kinect server, or some-
times as the as3kinect wrapper. To use it, you need a client application. This client
needs to know which protocol the server uses when sending the data. To ac-

12 http://www.ros.org/wiki/mit-ros-pkg/KinectDemos
13 www.as3kinect.org/

3.5 comparisons 45

complish that, the as3Kinect project includes an ActionScript 3 library known as
the “as3kinect client library". Flash developers can use this API to communicate
with the server/device. This library is a wrapper to other libraries, these libraries
generates the data processed by the framework, the frameworks supported are
OpenKinect, OpenNI and Codelaboratories NUI (not developed anymore).

3.5 comparisons

3.5.1 Introduction

In this section we will make a detailed comparison between the OpenNI/NITE
framework and the Kinect for Windows Software Development Kit (SDK) Beta, they
are the most famous and used framework to develop Kinect-based applications.
This comparison has the main objectives to highlight the main differences between
the libraries, analyse all the pros and cons, and lastly to explain clearly, strengthen
and better motivate our decision to use the OpenNI/NITE framework as the basis
of our developed solution.

The comparisons structure, model and development is based on [4] and on [8],
we report some informations listed in these articles adding some extra note we
collected during our test phases.

3.5.2 OpenNI/NITE Framework

We start examining and listing the positive features offered by the
OpenNI/NITE framework:

• the license allow a commercial use;

• it provides hand tracking and hand gesture recognition;

• it can automatically synchronize depth image frames with the color image
frame;

• it detects full body skeleton:

– the framework generates a tracking set of 20 joints;

– it also take in considerations orientations for the joints;

– it seems to consume less resources than Microsoft Kinect SDK’s body
tracker because it doesn’t perform a predictive analysis, this analysis
can increase the tracking accuracy but requests a lot of computational
resources[25].

46 kinect frameworks

• it supports other devices like the PrimeSense sensor and the ASUS WAVI
Xtion device.

• it supports multiple sensors;

• it offers a specific architecture where more device, middleware software and
applications can be registered and composed in different ways;

• it is cross-platform running on Windows (including Vista and XP), Linux
and Mac OS X;

• it comes with code for full support in Unity 3D game engine;

• it support for record and playback the audio to and from the storage;

• the library has events to detect particular situations like a new user enters
the detection field, leaves the field and so on.

This framework has also some cons and aspects that can be improved:

• it does not offer advanced support for audio;

• it does not have any kind of support for using the motor;

• the body tracking features needs some improvements:

– the orientations is not supported by all the joints especially for the
head, hands, feet, clavicles;

– a calibration pose is needed to start tracking (but it can be saved and
loaded for reuse)

– occluded joints are not estimated sometimes;

• it requires three different separate installers and a NITE license string (but
the process can be automated building a unique installer)

• SDK does not have a specific callbacks for events as new video or new depth
frame is available.

3.5.3 Kinect for Windows SDK Beta

Now we will analyse and listing the positive features offered by the Kinect for
Windows SDK Beta library:

• it provides full body tracking:

3.5 comparisons 47

– it does not need a calibration pose because the incoming data from
the depth stream is compared with known images of humans quickly
determine human shaped objects[25];

– the framework generates a tracking set of 20 joints;

– it seems to deal better with occluded joints.

• it supports multiple sensors;

• it offers advanced audio capabilities:

– acoustic noise suppression;

– echo cancellation;

– beam forming;

– it can be integrated with Windows speech recognition API.

• it allows access to the motor/tilt;

• a single installer is needed (but if you want to use all the features and
capabilities the number of installer needed increase)

• the framework not provide callbacks for events for like a new video or new
depth frame is available;

This framework has also some cons and aspects that can be improved:

• it is licensed for non-commercial use only;

• it tracks only full body, no hand tracking supported;

• it does not offer frame synchronization of two different sensor of the
color&depth image streams to one at the moment;

• the body tracking provided needs some enhancements:

– it only calculates positions for the joints and not orientations;

– it only tracks the full body, you cannot track only the upper-body or
single hands;

– it is more prone to false positive with respect to OpenNI[25];

– it seems to consume more computation resources than OpenNI/NITE
due to the fact it performs a predictive analysis of the tracking joints
specially when the sensor loses user’s tracking[25].

• no gesture recognition system is present;

• it only support a single device: the Kinect;

48 kinect frameworks

• it runs only on Win7 (x86 and x64);

• no support for Unity 3D game engine;

• no support to stream the raw IR video data;

• the library does not trigger events when new user enters in the detection
field or when the user is lost and so on.

Now we have a clear overview of the main differences and features offered by
the different development system. We are ready to explain the main motivations
why we decide to base our developed solution on the OpenNI/NITE framework:

1. when we started our development process the Windows Software Develop-
ment Kit (SDK) wasn’t already released;

2. this framework doesn’t provide at the moment gesture recognitions capabil-
ities;

3. OpenNI/NITE framework seems to be more lightweight with respect to the
Microsoft proposed solution;

4. our application need the support of special events to enable the configura-
tion management as new user enters in the detection field or when the user
is lost and so on;

5. lastly, the most important because we decided to maintain a platform inde-
pendence guaranteed from the fact that OpenNI and NITE provide a cross-
platform solution.

4 D E V E LO P E D S Y S T E M

4.1 proposed solution

This chapter is the key and crucial point of this work because here we will
present our developed prototype relative to the emulation of an IWB based on
the utilization of Microsoft Kinect. Our proposed solution provide an IWB where
we control the mouse position mapping it with the user’s hand joint exploiting the
skeleton tracking capabilities offered by the device and the OpenNI/NITE frame-
works, in particular we are able to put exactly the mouse cursor on the top of the
index finger of the user. We will start showing the UML diagrams constitute the
foundation of our proposed solution from an external and internal points of view.
We will present the SimpleOpeNI library, a simple OpenNI and NITE wrapper for
Processing. Our prototype was built on top of this library to have a simple and ab-
stract programming tool which can take advantage on all the functionalities and
capabilities provided by OpenNI and NITE. We will drive the user in the process
to understand how develop a Kinect-based application providing some examples
written in Processing we used as reference during our development process. In
the last two sections we will analyse the development details of the proposed so-
lution examining the development process we adopted phase-by-phase and the
implementation details contained in this project providing some code examples
and solutions to the problem we have encountered.

4.2 uml

In this section we will introduce the UML diagrams at the base of our developed
solution. We will approach the proposed solution from different perspective: the
external view considering the system as a black box and the internal view, in this
case we will examine the system from the inside, understanding what are the
different components and how they interact.

4.2.1 External view

The external view doesn’t explain the details regarding the internal functioning
mechanisms of the system. The system is represented as a black box. It simply

49

50 developed system

helps to understand what the system offer to the user and tries to explain the
system behaviour perceived from the outside.

Use Case

The first diagram we will see is the Use Case Diagram. This diagram is designed
to highlight all the features and functionalities offered by the system to the user. In
our specific case, like depicted in Figure 29, the system provides:

• the system enables the user to perform a left or right click: we are currently
still use the mouse to perform this activity because we decided to put the
device behind the user back in order to map the mouse position using the
skeleton tracking feature provided by the OpenNI/NITE framework. This
specific choice has created us some problems because our aim was to elim-
inate completely the use of any kind of device but in this situations we
maintained the possibility to click with the mouse or another similar device
because the user isn’t able to perform any kind of gesture having the Kinect
behind his back;

• the user in order to move the mouse mapped on his hand or better on his
index finger must perform a calibration procedure or load an existing one. The
calibration phase is subdivided in three different stages, we will discover in
the next sections how they works:

– skeleton calibration;

– the point calibration;

– the finger calibration.

• different visual feedbacks must be reported to the user such as a background
removal completed with skeleton limbs and all the events relative to the user-
tracking procedure such as a new user is detected, the user is lost, the cali-
bration is completed successfully and so on.

Activity Diagram - Calibration

The next diagram we will examine regards the different stages composing the
calibration procedure (see details in 4.6.2). As you can see from the diagram illus-
trated in Figure 30 when a new user is detected he or her can decide to perform
a new calibration or load an existing one (like described in 4.6.2), if the user
chooses to perform a new calibration the skeleton calibration is the first step the
user needs to cope with to go through the calibration process. When the skeleton
calibration (see details in 4.2.2 and in 4.3.3) is completed successfully, the user is
tracked and now he can perform the point calibration (see details in 4.6.2) stage

4.2 uml 51

Figure 29: Use Case Diagram. In this picture you can see the Use Case Diagram of the
system.

52 developed system

which allows to to map the screen space projected onto the wall and the view
field of the device fixing nine points on the screen. The last stage regards the
finger calibration step (see details in 4.6.2). This stage enables to fix the right offset
of the top of the index finger where we must put the mouse cursor with respect
to the hand joint provided by the tracking framework. The framework doesn’t
perform directly finger detection at the moment.

Figure 30: Activity Diagram - Calibration. In this picture you can see the Activity Dia-
gram relative to the calibration procedure.

4.2.2 Internal view

The internal view describes the structures and components, the internal pro-
cesses and activities, relationships and interactions between the different compo-
nents inside the system.

4.2 uml 53

Package Diagram

We will start understanding the different units composing the system inspect-
ing the Package Diagram of the system presented in Figure 31. This diagram is
useful to clarify the hierarchy and the relationship between the different part form
the application. In our specific case we have the simpleopenni package which is
the core of the application and the interface with the tracking frameworks. This
package interacts with the calibration package to control the calibration process
through the different stages and with the ui package dedicated to provide visual
feedbacks to the user.

Figure 31: Package Diagram. In this picture you can see the Package Diagram relative to
the entire application.

Class Diagram - Calibration

The calibration package is subdivided in the context, the interface with the ex-
ternal world useful to retrieve the current state and move to the next, and the
different implementations of the various states of the calibration procedure like
illustrated in the diagram in Figure 32.

Sequence Diagram - Skeleton Calibration

This Sequence Diagram is a preview on what we will see in a more detailed
explanation in section 4.3.3. In this diagram we will try to explain what are the
interaction between the application and the OpenNI framework during a skeleton
calibration: when a news user is detected an event is triggered in the application,
the application in turn request to the framework to control if the user has assumed
the calibration pose showed in Figure 21, when happen OpenNI triggers the next

54 developed system

Figure 32: Class Diagram - Calibration. In this picture you can see the Class Diagram
relative to the calibration process.

callback in turn and application request to really calibrate the user, finally OpenNI
responds with the outcome of the calibration. The application is now able to track
the user skeleton.

Figure 33: Sequence Diagram - Skeleton Calibration. In this picture you can see the
Sequence Diagram relative to the skeleton calibration procedure.

4.3 simpleopenni

SimpleOpenNI represents the core library of this project. It is a simple OpenNI and
NITE wrapper for Processing language. It’s meant to enable a more simple access
at some functionalities offered by the OpenNI/NITE framework such as skeleton
and hand tracking, gesture recognition, scene analysis and so on. In this section
we will help the reader to comprehend why we decided to adopt this library in

4.3 simpleopenni 55

the project introducing the Processing language and its particular philosophy. We
will discover the fact that this philosophy fits very well the approach we chose to
use to develop the IWB emulation. We will also analyse some examples written
in the same language that will illustrate all the main functionalities offered by the
library highlighting some pieces of code and the simplicity the library enables to
obtain in a few line of code our first working example.

4.3.1 Processing

Processing1 is an open source programming language and also an Integrated De-
velopment Environment (IDE) designed and built for students, artists, designers,
researchers and programmers who want to create easily images, animations, and
interactions. Initially developed to serve as a software for the electronic arts and
visual design communities with the purpose of teaching the basics of computer
programming in a visual context, and to serve as the foundation for electronic
sketchbooks, Processing also has evolved into a tool for generating finished profes-
sional work. It was conceived and built in 2001 by Casey Reas and Benjamin Fry
both members of the group called at the “Aesthetics and Computation" Group
MIT Media Lab2[33]. Processing provides a new way to learn programming
through creating interactive graphics and its philosophy is based on a particu-
lar technique called sketching, where the approach to the programming language
is simplified making it more accessible: Processing has the capacity to offer an im-
mediate visual feedback and adding more lines of code the program is created one
piece at time keeping the visual feedback offered to the developer or designer. For
example on [22] the creators of the language cite a possible approach for develop
a simple program: “The idea is to write a single line of code, and have a circle
show up on the screen. Add a few more lines of code, and the circle follows the
mouse. Another line of code, and the circle changes color when the mouse is
pressed". Another important characteristic offered by Processing and very useful
for the development part of this thesis is the extreme flexibility provided, in fact
exists more than a hundred extension libraries of the language covering different
and various domains and the main core library used in this project SimpleOpenNI
is one of them.

The language is derived from the Java programming language. The Processing
environment is entirely written in Java. Programs written in Processing are also
translated to Java and then run as Java programs. This particular feature has
enabled us to include the Processing code inside a more complex Java project
allowing us to exploit the potentiality of both the languages. We need to make
a large distinction between Processing and Java, Processing provides powerful

1 http://processing.org/
2 http://www.media.mit.edu/

56 developed system

graphics library and a simplified programming style that doesn’t require users
to understand more advanced concepts like classes, objects, or animation and
double-buffering (while still making them accessible for advanced users) making
programs shorter and easier to read.

We have created a special appendix A where we will indicate all the opera-
tions needed to install Processing, the SimpleOpenNI library and try to run the
example we will explain below and reported in a complete version in B. At this
point we need to make a clarification, the various examples reported below can be
copied inside the Processing environment and tested. The emulation of the IWB we
propose can be launched without installing Processing and SimpleOpenNI, all the
libraries needed for functioning are already included, you need only to previously
install the Kinect driver and the correct version of OpenNI and NITE.

In the next sections we will start to introduce some example of source code
written in Processing and based on the wrapper used in our project to interact
with OpenNI and NITE. We start with some Processing example to help the reader
to have a clear comprehension on what means write a Kinect-based application.
As we have previously mentioned our project is based on a normal Java project
(created using Eclipse IDE) that includes the Processing code needed to interact
with the SimpleOpenNI library, hence at the end of the chapter we will show how
is possible to establish this particular integration. In the source code introduction
we will take as reference the examples provided with the SimpleOpenNI wrapper
and others reported in this beautiful book [3] wrote by Greg Borenstein and released
in October 2011 as an early release with the first two chapters, the final release
will be estimated for January 2012. We need to make a clarification at this point,
the code written for the proposed IWB emulation you will see in this thesis is
not copied by the example described in the book because the code development
relative to this project is ended in the first days of September and the book was
released in October. Probably with the help of the book we could even wrote a
better code or conduct a more faster development. In this thesis we don’t provide
an hand gesture specific example because we not really use it inside our emulation
of the IWB even though we tested it during our development process and we
reported some details regarding the hand tracking in 3.2.3. If you are interested
you can find one in the examples provided within the SimpleOpenNI library or
in the book [3].

4.3.2 First Program

In this section we are going deeper into technical details and implementations
starting to see our first Processing program based on the SimpleOpenNI library to
better understand how design software application that can interact and take
advantage of the Kinect features and capabilities. This simple program read the

4.3 simpleopenni 57

images from the depth camera and the RGB camera displaying them side-by-side on
the screen. We take as first model of Kinect-based application a modified version
of the “Depth Image Test" you can find in the SimpleOpenNI library examples. In
this section we refer of some informations reported in the Chapter 2 of the book
we have mentioned before [3].

Now we will examine the code reported in B.1 line by line to have a clear
comprehension since if it is your first time working with this library it is really
important for you to understand this example. On line 1 we start importing the
library:

import SimpleOpenNI.*;

The second step is to declare the library object, the variable will be instantiate
during the setup process:

SimpleOpenNI context;

This object is the most important one and the core of the source code because it
enables to access all the data generated by the Kinect as depth and color images,
skeleton models and hand points. In this point we have simply declared it and
not instantiate it, hence in the setup function below we need to be sure to do it.
The first function we need to implement is the setup function. As described above,
firstly, we need to instantiate the SimpleOpenNI instance that we declared at the
top of the sketch:

void setup()

{

context = new SimpleOpenNI(this);

In the example reported in [3] they start defining the size of the application but
in our case we derive it summing the depth map dimension and the dimension
of the RGB images like in it happen on line 18. We proceed enabling the mirror
mode, as we have already told the mirror mode enables to project the images on
the screen like if you are in front of a mirror.

// mirror is by default enabled

context.setMirror(true);

The next two instructions are very important because they allow to specify we’re
going to enable both the depth image and the RGB image streams generated
from the Kinect. This phase where the developer specifies the kind of data he
want to have access is very important because there is a clear indication on what
we need and the library is able in this way to do just enough work to provide to
the developer the exact information he needs optimizing the computation.

58 developed system

// enable depthMap generation

context.enableDepth(640,480,30);

// enable ir generation

context.enableRGB(640,480,30);

Here we need to do a parenthesis on the Kinect provided resolution and frame
rate. In the specification reported in 2.1.3 we said the Kinect as a depth resolution
of Quarter Video Graphics Array (QVGA) 320×240 at 30 frames per second but it
can support also VGA 640×480 at 30 frames per second, hence we use the last
one for both RGB and depth streams. By default both streams are setted to this
resolution but to be more clear in this case we specify it. Other resolutions for
the RGB stream are supported but at the moment we decide to use this one. The
configuration in this case is forced from code but is possible to load it from an
OpenNI eXtensible Markup Language (XML) configuration file like this one:

Listing 4.1: SamplesConfig.xml

1 <OpenNI>
2 <Licenses>
3 <License vendor=" vendor " key=" 0KOIk2JeIBYClPWVnMoRKn5cdY4

="/>
4 </Licenses>
5 <Log writeToConsole=" t rue " wr i teToFi l e=" f a l s e ">
6 < !−− 0 − Verbose , 1 − Info , 2 − Warning , 3 − Error (

default) −−>
7 <LogLevel value=" 3 "/>
8 <Masks>
9 <Mask name="ALL" on=" f a l s e "/>

10 </Masks>
11 <Dumps>
12 </Dumps>
13 </Log>
14 <ProductionNodes>
15 < !−− Normal Image −− −−>
16 <Node type=" Image " name=" Image1 ">
17

18 <Configurat ion>
19 <MapOutputMode xRes=" 640 " yRes=" 480 " FPS=

" 30 "/>
20 <Mirror on=" t rue "/>
21 </Configurat ion>
22 </Node>
23

24 < !−− HighRes Image −−>
25 < !−−
26 <Node type=" Image " name=" Image1 ">
27 <Configurat ion>
28 <MapOutputMode xRes=" 1280 " yRes=" 1024 "

FPS=" 15 "/>

4.3 simpleopenni 59

29 <Mirror on=" t rue "/>
30 </Configurat ion>
31 </Node>
32 −−>
33

34 <Node type=" Depth " name=" Depth1 ">
35 <Configurat ion>
36 <MapOutputMode xRes=" 640 " yRes=" 480 " FPS=

" 30 "/>
37 <Mirror on=" t rue "/>
38 </Configurat ion>
39 </Node>
40 < !−−
41 <Node type=" Audio " name=" Audio1 ">
42 </Node>
43 −−>
44 </ProductionNodes>
45 </OpenNI>

In the configuration file are defined the vendor license as illustrated in 3.1.6 and
the production nodes, for a detailed description see section 3.1.3, in this particular
case a “normal" RGB image node and depth node. To load the file however you
need a different instantiation of the library:

context = new SimpleOpenNI(this,"SamplesConfig.xml");

Closing this parenthesis on the resolution and frame rate adopted we proceed in
the code analysis defining the appearance of our application indicating the back-
ground color and the size of the window derived as we have already anticipate
form the depth and RGB images dimensions.

background(200,0,0);

size(context.depthWidth() + context.rgbWidth() + 10, context.rgbHeight());

Now we are ready to examine the “dynamic" part of our application or better
the draw loop where we access to the streams and we draw them on the screen
inside the application window. This tells the library to get updated data from the
device so that we can process it. The update rate also depends from the frame
rate generated by the Kinect (30 frame per second) and the update frequency of
the application, in this specific case the application is simple, hence the update
rate of the application is probably more faster with respect to the Kinect. This is
an aspect you have to deal when you are building complex application.

void draw()

{

// update the cam

context.update();

// draw depthImageMap

60 developed system

image(context.depthImage(),0,0);

// draw RGBImageMap

image(context.rgbImage(),context.depthWidth() + 10,0);

}

This is the key point of the example because here the depth and color images
are displayed using the depthImage() and the rgbImage() which returns the freshest
images available and passed to the Processing’s built-in image() function along
with the position where to put the images inside the application window. As
result of running our first example of Kinect-based application we obtain:

Figure 34: First program with SimpleOpenNI. This figure represents a screen capture
obtained running our first program, as you can see there is the depth map
image side-by-side the color image obtained activating the RGB camera.

4.3.3 Skeletal Tracking

Now we are able to create and run our first Kinect-based program, we are ready
to see something more interesting and strictly related to the code developed in
this thesis: a skeletal tracking example. In this case we will base our code expla-
nation on the example provided with the library called “User", you can find all
the code in the Listing B.2. Citing another time the book [3] all the Chapter 4 is
dedicated to skeleton tracking, in this section we will refer to some advices and
annotations reported in the book.

In the last example we simply print the depth data obtained form the Kinect.
In this example we use a different approach, OpenNI has the ability to process
the depth image for us in order to detect people and produce with the analysis
performed by the NITE framework a 3D model of a person’s skeleton or better
it provides directly a skeleton model. OpenNI once has detected the user, it will
tell us the position of each of the user’s visible joints: head, neck, shoulders,
elbows, hands, torso, hips, knees and feet, like depicted in Figure 12. We are

4.3 simpleopenni 61

building an IWB and the skeleton tracking provided is exactly what we need to
pursue our goal. If we want to be more specific our goal is to map the mouse
position on the top of the user’s index finger. We will see in the next chapters how
we had pursued our goal but at the moment we start understanding how the
skeletal tracking works. First of all, we will have to learn to use the functions that
SimpleOpenNI provides for accessing the joint data and during this process we will
need to understand how the skeleton calibration works because it is the basis to start
the tracking process. SimpleOpenNI also provides its own callbacks that let us
detect some events during the user-tracking process: when a new user is discovered,
when tracking first begins, when a user is lost and so on. Learning how to work
with these callbacks is key to taking full advantage of OpenNI’s tracking facilities.
The last phase once we have learnt how to access skeleton data and specially to an
individual joint we will use all the joints to draw a a basic stickman that follows the
pose of the user. SimpleOpenNI provides special functions to draw the straight
lines that connects two adjacent joints called “limbs". Analysing this example we
skip all the instructions examined in the last proposed example and we will focus
our attention to the skeleton related instructions and functions. Now we are ready
to start, firstly we will see the instruction to enable the user skeleton tracking:

// enable skeleton generation for all joints

context.enableUser(SimpleOpenNI.SKEL_PROFILE_ALL);

The enabling function takes an argument SimpleOpenNI.SKEL_PROFILE_ALL, this
is a constant that tells SimpleOpenNI that we want to track all the joints in the
user’s skeleton. In this case we not examine the code line by line from top to bot-
tom but we skip some lines and we return back later because we have to introduce
the particular events triggered by OpenNI and detected by the library relative to the
user-tracking process. In addition we need to make a small deviation explaining
all the phases of the skeleton calibration procedure. When we talk about user-tracking
events we refer for example to the event triggered when a new user is detected:

void onNewUser(int userId)

{

println("onNewUser - userId: " + userId);

println(" start pose detection");

context.startPoseDetection("Psi",userId);

}

This event enables a pose detection procedure, as we have argued in 3.2.2 a calibra-
tion process is used to adjust the skeleton model to the user’s body proportions
and starts the pose tracking. The user must assume what in the technical liter-
ature and in PrimeSense’s own documentation it is called the “Psi" pose: you
have to stand in front of the device with your feet together and your arms raised
above your shoulders on the sides of your head, like illustrated in Figure 21. In

62 developed system

Figure 35 are presented the calibration flow composed by different stages where
you have to go through to enable the skeleton tracking. In the flow in Figure

Figure 35: NITE Calibration flow. This figure represents the different step needed to
perform the skeleton calibration phase.

35 you can find the different actions and callbacks needed to complete the pro-
cess. The calibration phase is defined in [3] a “back-and-forth process between
our application and OpenNI", in fact, at each step, OpenNI will trigger one of the
defined callback functions, for every callback correspond a specific action to go
through the various step of the process. When OpenNI detects the first user it
calls onNewUser() function. Within this function, we can start the tracking process
by calling startPoseDetection(). This function tells to OpenNI to control if the user
has assumed the calibration pose showed in Figure 21. As soon as the user does
assume the pose, OpenNI will trigger the onStartPose() function.

void onStartPose(String pose,int userId)

{

println("onStartPose - userId: " + userId + ", pose: " + pose);

println(" stop pose detection");

context.stopPoseDetection(userId);

context.requestCalibrationSkeleton(userId, true);

4.3 simpleopenni 63

}

Then, in order to proceed through the calibration process, we need to call request-
CalibrationSkeleton(). That function will call the real skeleton detection process.
When this process is completed OpenNI will report back by calling the onEndCali-
bration() function.

void onEndCalibration(int userId, boolean successfull)

{

println("onEndCalibration - userId: " + userId + ", successfull: " + successfull);

if (successfull)

{

println(" User calibrated !!!");

context.startTrackingSkeleton(userId);

}

else

{

println(" Failed to calibrate user !!!");

println(" Start pose detection");

context.startPoseDetection("Psi",userId);

}

}

The calibration process cannot be always successful, in fact, the status of the
calibration will be reported back by OpenNI. If it succeeded, we can call the last
function startTrackingSkeleton() to begin accessing the joint data from the user. In
the case the calibration process fails, we can start from the beginning by recalling
startPoseDetection(). In order to improve the chances of a successful calibration we
added to the project an additional on-screen visual feedback such as described in
section 4.6.1.

Closing the parenthesis relative to the different calibration stages we can con-
tinue the analysis of the code example. Once the calibration phase is completed
and the user skeleton is tracked you can start drawing it.

// draw the skeleton if it’s available

if(context.isTrackingSkeleton(1))

drawSkeleton(1);

In the code reported below you can see the drawing of some limbs, for each
segment is defined the start joint and the end joint we have to connect with the
segment. The joint labels in Figure 12 correspond directly to the constants by
which SimpleOpenNI refers to the joints.

// draw the skeleton with the selected joints

void drawSkeleton(int userId)

{

64 developed system

// to get the 3d joint data

/*
PVector jointPos = new PVector();

context.getJointPositionSkeleton(userId,SimpleOpenNI.SKEL_NECK,jointPos);

println(jointPos);

*/

context.drawLimb(userId, SimpleOpenNI.SKEL_HEAD, SimpleOpenNI.SKEL_NECK);

context.drawLimb(userId, SimpleOpenNI.SKEL_NECK, SimpleOpenNI.SKEL_

LEFT_SHOULDER);

context.drawLimb(userId, SimpleOpenNI.SKEL_LEFT_SHOULDER, SimpleOpenNI.SKEL_

LEFT_ELBOW);

context.drawLimb(userId, SimpleOpenNI.SKEL_LEFT_ELBOW, SimpleOpenNI.SKEL_

LEFT_HAND);

If you want to see the outcome you can obtain running this example see the
Figure 36 below.

Figure 36: Skeleton Tracking example. This figure represents a screen capture obtained
running the skeleton tracking example, as you can see there is the depth map
image of the body with the various limb drawn on it.

4.3.4 Eclipse

Once we have understand how to track the user body we will introduce how to
integrate the Processing code inside a normal Java project like we did in this project
to exploit the potentiality of Java and Processing together. In the code listing B.3
we provide the main class of our developed software to help you understand how

4.4 system architecture 65

to move the code. We take as reference the guide provided on the Processing
website3.

The first operation you need to perform is to include in your previously created
class the core Processing library:

import processing.core.*;

Then you have to extend your class with the PApplet class is the parent Processing
class that allows us to have access to all the Processing goodies.

public class Main extends PApplet {

Next you have to specify the main Processing functions you need to run a pro-
gram: setup() and emphdraw() (specify "public" for these functions). In our code
we don’t specify the draw method because this is the main class used only to
launch the program and all the logic of the program is included in a separated
one. If you want to run your code as a Java Application (rather than applet) and
turn on Processing’s present mode: You must add a main() function to your code.

public static void main(String args[]) {

logger.debug("--- Enter - Paramenters = args: " + args.toString());

PApplet.main(new String[] { "--present", "it.unitn.kinect.Main" });

logger.debug("--- Exit");

}

4.4 system architecture

In this section will guide the reader to understand the system architecture of
the proposed solution. As you can see from Figure 37 and as we have previously
mentioned different times our developed system is based on the OpenNI/NITE
framework. The first bottom level of the system architecture is composed by the
device and its driver. Then we have OpenNI which provide a set of API to be
implemented by the various sensor and another set of API for the other side that
is implemented by the middleware components, in fact, OpenNI wraps the NITE
middleware framework. Then we have SimpleOpenNI, an abstraction layer for
the underlying structure. On top of the stack we have our application based on
SimpleOpeNI, which is based in turn to OpenNI/NITE framework, which in turn
interacts with the device.

3 http://processing.org/learning/eclipse/

66 developed system

Figure 37: System Architecture. In this picture you can see the system architecture.

4.5 development process

In this section we will drive the reader through an overview of the main phases
of our development process. Before we start to see phase by phase the evolution of
our process we need to make some considerations about our methodology adopted,
the approach used to solve some of the problem encountered during our devel-
opment process. All this aspects are strictly connected with the state of the art of
the technology and all the libraries involved in the project. Talking about the state
of the art when we started examine what this particular technology can offer we
encountered different problems due to its recent release (December 2010), such
as:

1. the first and most important aspect is related to the fact that this technology
is new, it introduces a new paradigm of interaction with the computer and
all the software introducing a new set of considerations and problems we
don’t evenly know;

4.5 development process 67

2. it seems the current Kinect firmware used is limited in various aspects like
resolution and frame rate for example;

3. all the libraries examined are in continuous evolution due to their recent re-
lease, at the moment there aren’t available solid libraries developed in the
years;

4. the tracking algorithms provided by the different frameworks are often unsta-
ble and they don’t offer the performance or the functionalities we wish;

5. the majority of the Kinect-based application, library and framework you
find online are in most of the cases “hacks" and not stable libraries that can
be usable for a project like this one, this aspect can create some confusion
sometimes;

6. connected to the fact the libraries used to interact and process the data
generated by the Kinect are in rapid evolution, the relative documentation
is in the same state, creating some problem for the comprehension of the
different code functionalities;

7. if we consider the literature and academic productions connected to this spe-
cific topic and all the related aspects we are in the same situation for the
documentation, you can find only a few good reference;

8. probably we was among the first in the world to use the Kinect in a project
like this one;

9. probably we was among the first in the world to decide to use the Kinect posi-
tioned behind the user and not in front of it comprehending all the problems
related, in fact the device is designed and meant to be used with the user
in front of it. The user must assume a pose in a way that all the body part
can be visible and distinguishable by the Kinect without obstructions in be-
tween or to attach to the body. Surely some of the instabilities detected in
the tracking algorithm are strictly connected to this fact.

The set of problems listed above that we have encountered in the first phase
of the project during the research phase drove us to change our approach and
methodology from the traditional approach to a more “handmade" process. We de-
cide to adopt the philosophy proposed by the creators of the Processing language.
This philosophy is based on a particular technique called sketching, where the
approach to the programming language is simplified making it more accessible:
Processing has the capacity to offer an immediate visual feedback and adding
more lines of code the program is created one piece at time keeping the visual
feedback offered to the developer or designer. Hence, we built our application on

68 developed system

step at a time in a cycle manner, adding a single feature for each step and testing
it immediately to see possible problem we didn’t consider because we aren’t ad-
dicted to this kind of technology or simply the fact that the user wasn’t able to
perform some actions because we aren’t using a precise device to move the mouse
or the fact that the tracking can be noisy sometimes with the necessity to introduce
an intermediate approximation level to smooth the detected points. At this point
we can start examining all the phases we go through in our development process:

1. during the research phase the first step was to test a lot of libraries to see
what in practice the Kinect can do and started trying to become more famil-
iar on what means build a Kinect-based application;

2. the next phase consisted to isolate the most used libraries and the libraries
offered the features we needed to emulate an IWB, as you can see in 3

there aren’t a lot and offering the features we needed the choice was quite
easy because when we start there was only one complete framework, the
OpenNI/NITE framework (see respectively 3.1 and 3.2), developed by the
company conceived the technology is at the base of the Kinect functioning;

3. once we have chose the libraries at the base of our developed solution we in-
stalled them on the different operating systems, we ran all the demos trying
to understand what the library can did and how to use it for our particular
purpose, or rather emulate an IWB taking as inspiration the WiiLD project
described in 2.3.3; during this step of the development process we discov-
ered the SimpleOpenNI library (see 4.3), a wrapper wrote in Processing that
enables us to create an abstraction layer on top of both OpenNI/NITE;

4. the next phase regarded running our first application coded in Processing and
based on the new amazing library we discovered, like the one examined in
4.3.2. We tried all the example proposed within the library and we started
modified some of them to gain the mouse control using our hands from a
frontal approach with respect to the device;

5. once we have gained the control of the mouse using the right hand and
gesture recognition to enable the tracking session, we decided to create some-
thing more interesting giving a feedback on what the Kinect see as its detec-
tion field performing a background removal;

6. then we decide to introduce a notification system intercepting the events trig-
gered during the user-tracking process such as a new user is discovered,
lost and so on, providing another feedback to the user. We took as inspi-
ration of our notification model (see 4.6.4) the famous software “Growl"4.

4 http://growl.info/

4.5 development process 69

During the implementation of this solution we decide to move our develop-
ment outside the Processing IDE, because in our opinion is not the proper
environment where build complex application. We integrated the code in-
side an out-and-out Java project (Processing language is derived from Java
and it is completely integrable inside normal Java code) in the Eclipse IDE
in a way that we can use a more suitable development environment and in
addition having all the “power" provided by Java;

7. once we moved the development inside a Java project we tried the first at-
tempt to create an IWB: we moved the Kinect behind the user’s shoulder, but we
made a mistake because in the process to map the mouse position exactly
where is the user’s hand we used the hand tracking provided by the gesture
recognition algorithm of the NITE framework. We added a fixed offset to the
mouse position with respect to the hand center position because the NITE
algorithms don’t perform finger detection and we want the mouse under
the top of our index finger. We discovered that this approach works but its
not precise at all (the fixed offset not help at all). During this phase we im-
plemented our first form of calibration establishing a mapping between the
virtual space of the Kinect’s detection field and the space delimited by the
computer desktop projected on the wall. We used two point on the diagonal
to enable the mapping but this a too much simple solution because if the
Kinect is not positioned perfectly parallel to the wall surface the mapping
can be wrong;

8. the next step is a crucial step in the development process because it rep-
resents the turning point on the right direction to achieve our goal: we
decided to introduce the skeletal tracking and map the mouse position on
the hand joint (also in this case the framework not perform finger detection
provided by the NITE framework; at the same time we augmented the cali-
bration point to nine subdividing the space in four quadrant. These choices
allowed a better mapping of the mouse position but it wasn’t perfect as we
want, we need to use a custom offset;

9. our proposed solution relative to enabling a customized offset was to create
an additional calibration (see 4.6.2 for more details) specific for the finger using
as a model the calibration used for old joystick and gamepads;

10. during the optimization phase we discovered the fact that pointing on very
precise points and writing can be difficult due too a noisy tracking in some
cases with huge continuous oscillations of the mouse position, hence we
introduced some smoothing and approximation on the points. This solution
unfortunately has a bad counter-indication: it introduces some delay during
the tracking;

70 developed system

11. in the last and final step we introduced the possibility to save all the calibra-
tion points and reload them when the user is lost or detected for the first
time.

4.6 implementation details

In this section we will highlight some implementation details of our proposed
solution to illustrate some new features we added to the software or to explain
in details how we solved some known problems explained previously. We will
present some pieces of code and images showing the different solutions proposed.

4.6.1 Background Removal

As we have already mentioned in 2.2.3 the visual feedback returned to the user is
vitally important during the process of disambiguation helping him or her assum-
ing the correct pose to be detected enabling a the right behaviour of the software.
In our case the user’s position is very important with respect to Kinect because it
enables a correct skeleton tracking from which depends a right mouse position
on the screen mapped exactly on top of the index finger of the user. The visual
feedback returned to the user allows also a good reference during the calibra-
tion phase to fix the correct virtual points (the nine point of calibration on the
screen) with respect to the screen position from which we compute the mouse
position with respect of the hand position in the virtual detection field of the de-
vice. Our application displays on the right bottom corner of the screen a small
window where we separate out the part of the image that contains people from
the background, practically we display what the Kinect detects only showing the
user body cut out from all the rest part of the environments the body reside. We
add also to the figure displayed the various limbs, the different segments which
connects two adjacent joints (like described in 4.3.3 and big point positioned on
the hand joint the user chose as the reference to map the mouse position.

The code we use to perform the background removal is illustrated in B.4. The
code listed below shows how to retrieve the different streams needed to perform
the background removal: firstly we retrieve the RGB image coming from the RGB
camera, then we need to load the user’s depth map.

// retrieve the current image from the RGB camera

rgbImage = kinect.rgbImage();

// load the pixel composing the colored image coming from the RGB camera

rgbImage.loadPixels();

4.6 implementation details 71

// find out what are the pixels belonging to each single user

userMap = kinect.getUsersPixels(SimpleOpenNI.USERS_ALL);

Once we have this informations a loop cycling on the pixels of the background
image creates a new image with the user figure depicted in the pixel labelled as
belonging to the user inside the depth map. The last phase is to load the new
created image in the window designed to show this visual feedback to the user.

// update the new image pixels

userImage.updatePixels();

// load the new user image in the feedback window in position 0,0

image(userImage, 0, 0);

The result of this particular operations is the one proposed in Figure 38.

Figure 38: Background Removal. In this picture you can see a background removal example.
In the figure are reported also the various limbs.

4.6.2 Calibration

The crucial point of the IWB emulation is the calibration phase. A good calibra-
tion enables a good tracking, if the calibration phase is not perfect it can influence
in negative the tracking phase. This particular phase is subdivided in three differ-
ent moments:

1. the calibration of the user’s skeleton provided by the OpenNI/NITE frame-
work;

2. the point calibration, during this procedure we need to map the screen space
projected onto the wall and the view field of the device fixing nine point

72 developed system

showed on the screen, we will discover in 4.6.2 how the various calibration
points will be fixed;

3. the last phase: the calibration of the finger, in the sense we need to compute
the offset between the top your index finger, where we want the mouse
cursor is positioned, and the center of the the user’s hand select to be the
reference for the mapping. We need to perform this specific operation be-
cause at the moment the framework doesn’t provide any sort of finger detection,
hence in order to position the mouse correctly with respect to the hand joint
provided by the detection framework we need it to apply the right offset.

Skeleton calibration

This is the operation at the base of the skeleton tracking. We will not go into de-
tails on this particular phase because we have already described in details in the
previous section 4.3.3, we simply make a small recap to explain clearly what the
user must do to complete each phase of the calibration stage the software request.
The skeleton calibration comprehends different stages, the user needs to assume
a particular pose illustrated in Figure 39, once the starting pose is detected, the
framework performs the real skeleton detection process returning back the out-
come of this operation.

Figure 39: Start Pose Visual Feedback. In this picture you can see the start pose visual
feedback is reported to the user indicating the correct pose he/her needs to
assume.

If the skeleton calibration is performed successfully by the user, the software
show on the visual feedback window the user body with a background removal
(explained in previous section 4.6.1) with the addition of the skeleton limbs and
big red point on the hand defined to be the reference for the mouse mapping as
illustrated in Figure 38. Ended this phase the user must continue through the
calibration process with the point calibration, see next section 4.6.2.

4.6 implementation details 73

Point calibration

The point calibration phase is a crucial stage under the calibration process during
which the user must fix nine points positioning the center of the hand on each
single point and clicking with the left button on the mouse to fix the position.
Through this procedure we are able to map the screen space projected onto the
wall and the view field of the device. When you fix a point the next one will be
highlighted to help the user understand which is the next one. The user start
fixing the top left point then he or her moves horizontally on the same line from
left to right, once he finish the first line, he starts again on the left with the next
line from top to bottom.

Figure 40: Point Calibration Window. In this picture you can see the point calibration
window which enables to fix nine points positioning the center of the hand
on each single point and clicking with the left button on the mouse to fix
the position. Through this procedure we are able to map the screen space
projected onto the wall and the view field of the device.

We adopted a specific Java pattern to control all the state transitions during the
calibration process from a point to another or when a specific phase is completed
implementing a “State Pattern". The State Pattern is a behavioral design pattern.
This pattern is used to represent the state of an object, in particular when an object
is a a function of its state and it must change its behavior at run-time depending
on that state [9]. In the code listing B.5 you can find the implementation of
“context class" which represents the only one interface with the pattern where you
can retrieve the current state and move to the next state. We have represented the
different “states" composing the state machine as derived classes of an abstract
State base class implementing inside each instance of the various derived class the
state-specific behaviour. This pattern does not specify where the state transitions
will be defined. In our case we chose to implement the state transitions inside
each single state to keep the context class more simple as possible. In the code

74 developed system

example below is represented the instantiation of the main class control the state
transitions during the calibration phase, practically the context class:

calibrationState = new StateContext(new UserCalibratedState(), 9);

All the data collected during the point calibration phase is saved and used to
compute at runtime the current mouse position. We chose to fix nine points to
subdivide the screen in four quadrant to increment the accuracy of the mouse
position in some particular cases when the device is not positioned correctly and
perfectly parallel to the wall surface. We pre-compute some common parameters
and constants to speed up the runtime calculation. All the operation performed
are linear calculation.

Finger calibration

As we have previously mentioned the framework doesn’t perform finger detec-
tion at the moment, so we add this feature using as a model the calibration used
for old joystick and gamepads: we designed a square where the user have to put
the palm of the hand at the bottom of the square like depicted in 41. There’s a
line firstly going form left to right and then from top to bottom, when the line
pass under the top of the index finger the user must perform a left click to fix the
right offset where we must put the mouse cursor.

Figure 41: Finger Calibration. In this picture you can see the finger calibration part which
enables to compute the offset between the top your index finger, where we
want the mouse cursor is positioned, and the center of the the user’s hand
select to be the reference for the mapping.

Saving and Loading

Another important feature we add is the possibility to load a previously saved
calibration. When a new user is recognized the window reported in 42 is pro-
posed to the user enabling the possibility to perform a new calibration or load an
existing one.

4.6 implementation details 75

Figure 42: Start Calibration Window. In this picture you can see the start calibration
window which enables to load an existent already saved calibration.

Talking about saving the calibration parameters, SimpleOpenNI already provide
the possibility to do that:

kinect.saveCalibrationDataSkeleton(userId, "./calibration/calibration.skel")

We also add the possibility to save all the other informations collected during
the calibration phase, or rather all the mapping point retrieved during the point
calibration stage and the offset where we put the mouse cursor with respect to
the hand joint detected by the framework.

4.6.3 Smoothing data

During our development process we have discovered the fact that the skeleton
tracking is quite noisy, hence, we needed to apply some approximations and smooth-
ing procedure to enable pointing on specific icons or writing with Ardesia possi-
ble without too much oscillations of the mouse position. SimpleOpenNI provides
a specific function to define smoothing on the skeleton data:

// set the smoothing factor for the skeleton

kinect.setSmoothingSkeleton((float) 0.2);

We added another additional approximation taking the mean of the last 7 points.
The introduction of all this forms of approximation and smoothing has a bad
counter-indication, it generates a sort of lag in the tracking. We tried to find
trade-off between this two side of the same coin, maybe in future a more accurate
study can be conducted on this specific topic.

4.6.4 Notification System

In Figure 43 you can see an instance of the possible notification feedbacks dis-
played in the top right corner of the screen to inform the user about the event
detected during the user-tracking process like can be a new user, the current user
is lost, the skeleton calibration is completed successfully and so on. We decide to
add this features because as explained in the example 4.3.3, the framework is able
to trigger some callbacks when specific predefined events happen.

76 developed system

Figure 43: Notification System. In this picture you can see the notification system used
to notify the detected events during the user-tracking process.

4.6.5 Internationalization

The proposed solution was internationalized enabling the possibility to choose
between two languages of utilization: English and Italian. We made use of the
well known Java technique based on “ResourceBundles"5 to add this particular fea-
ture. This proposed solution helps to maintain a single source code base for all
language versions, in future it will be possible to add other languages in case of
necessity. We designed a predefined set of string stored in different files contain-
ing the various translations.

5 http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles/

5 VA L I DAT I O N

In this chapter we will present a detailed description of the results obtained and
data collected during our test phase, but firstly we will mention all the conferences
and events we have participated showing our demo of the solution developed.
During each test session we proposed to the various a testers a questionnaire to
fill asking some general questions about the Kinect and the Interactive Whiteboard
(IWB). Then, we reported all the outcomes collected tracking if the various users
were able to complete the calibration and perform some predefined actions or
activities.

5.1 researchers’ night 2011

The “Researchers’ Night" is a Europe-wide event bringing together the public at
large and researchers once a year on the fourth Friday of September. In 2011 it
took place on 23 September in over 800 venues of 320 European cities in 32 coun-
tries. It took place also in our city (Trento) and during the Researchers’ Night
“normal people" have the unique opportunity to discover research facilities that
are usually not open to public (laboratories, research centres, museum collections
), to use the most recent technologies and instruments with the guidance of sci-
entists, to participate in experiments, competitions and quizzes, to watch demon-
strations and simulations, to exchange ideas and to party with the researchers.
For one night, everyone can be a scientist. We took part with a stand where we
allowed “normal people" to try our emulation of the IWB. We collected 13 tests, we
asked to the the users at the end of the test to fill a questionnaire, we also added
to this questionnaire informations about the progress of the test. All the results
obtained are presented in last section 5.4 of this chapter. The results obtained
depends more from the fact that the user was able to perform a good calibration
and from the fact the user was able to assume a correct pose with the shoulder
parallel to the device, staying in a position not too much far from the wall and
keeping the arms not too close to the body. All these expedient enables a good
skeleton tracking and enables to perform the different activities in most of the
cases without difficulties.

77

78 validation

Figure 44: “Researchers’ Night" in Trento
Figure 45: Our stand at “Researchers’

Night" in Trento

5.2 una rete di lavagne

We participated also to a conference “Una Rete di Lavagne" on 1 October, 2011.
This conference was dedicated to discuss about the introduction at school of the
IWB. At this conference has taken part over a hundred teachers. Here we intro-
duced this project and showed a simple demo of the emulated IWB. During this
conference we collected various opinion and suggestions to improve our project
and for future works from the teachers, other researchers and experts in this spe-
cific field.

5.3 presentation during open day

A demo of the software has been presented to future university students during
the Open Day at the university. We hope the university will have more students
the next year.

5.4 results and statistics

In this section we will analyse all the results and statistics relative to the data
we collected during the tests performed by the users. As we have previously men-
tioned all the informations reported in this section come from the test performed
during the “Researchers’ Night" in Trento. We have decided to conduct our tests
during this event because we want to see the impact on “normal people" of a tech-
nology like this one. We have chosen to not focus our tests only on students and
teachers or people directly connected to the world of education but to extend our
domain of interest to all the other people, in fact, at the test took part developers,
journalists, video makers but also students and teachers. In the test we haven’t

5.4 results and statistics 79

Figure 46: Una Rete di Lavagne
Figure 47: Demo during the conference

“Una Rete di Lavagne"

involved children because the board was mounted too high and because the track-
ing skeleton features at the moment don’t work well with small bodies. We asked
to the user to fill a questionnaire collecting “background" informations, then we
added the outcomes about the progress of the test such as the completion of the
calibration phase or the fact that the users was able to perform some predefined
actions like open an application or write some on the board using Ardesia1, a free
digital sketchpad.

5.4.1 Personal informations

In Figure 48 we will present the data collected during the test phase relative
to the personal informations belonging to the people have taken part to the tests.
As you can see the majority of the people have participated was men and all of
them was “technology addicted" in the sense that they use daily technology devices
or computers. Naturally, this aspect can helped them to easy understand the
operating mode of the device and use it in a better way. This good relationship
with computers and technology devices in general is also explained by the fact

1 http://code.google.com/p/ardesia/

80 validation

the majority of them have an age comprised between 20 and 30 years, but it is not
always the case.

Figure 48: Personal informations results. In this picture we report the data collected dur-
ing the test phase relative to the personal informations of the users participate
our test phase.

5.4.2 Kinect

Once we have understand the “type" of people have taken part to our testing
stage in terms of personal informations and the relationship they have with tech-
nology in general, we asked them some questions regarding the Kinect: if they
knew the Kinect, if they have ever used one or even owned one. The results
collected are illustrated in the Figures 49, 50, 51.

In Figure 49 we report how many users knew the Kinect, the 70% already known
it, but only the 40% have already used it, as you can see in Figure 50. The fact
that most of the people involved in the test already known it is explained from
the popularity of the Kinect, having sold 8 million units in its first 60 days on
the market, Kinect has claimed the Guinness World Record of being the “fastest
selling consumer electronics device"[14]. Microsoft also spent a lot of money for
commercial especially in Italy, so probably most of the people have seen the spot
on TV but in practice not many of them have ever used it, in fact only the 40%
have interact with it at least once as depicted in Figure 50. The percentage of
the people own it is very low, just above 20%, this value can be derived from the

5.4 results and statistics 81

Figure 49: Did you know Kinect?. In this figure we represent how many user already
known the Kinect.

Figure 50: Have you ever used the Kinect?. In this figure we represent how many user
have already used the Kinect during their life.

fact that in Europe the device diffusion is quite slow with respect of the U.S. and
surely the financial crisis has a huge clout on the consumers, the Kinect cannot be
defined an essential good. All this numbers influence a lot the results of the test
because the fact that most of them already knows the Kinect could help, but the
fact that more than half hasn’t interacted in the past with the device explains why
during the first attempt of the calibration a half of the user miss it, but we need to
say this is not the only one motivation, we will discover in the next sections why.

We asked also the motivation why they bought it but in only one case the user
has directly bought it, in the other cases it is a gift for Christmas.

5.4.3 Interactive Whiteboard

In the questionnaire we proposed to our testers we have also included some
questions about the level of knowledge relative to the IWB’s world. The data col-

82 validation

Figure 51: Do you own a Kinect?. In this figure we represent how many user already
owned a Kinect.

lected is quite similar to the information regard the Kinect as you can understand
from Figure 52 and 53, but in this last case more users have already interact with
a traditional IWB, probably because a large set of our testers are students of the
university or senior high school and probably because they use it during lessons.
This aspect was positive because enables to the users a fast comprehension of the
different modalities and interaction methods proposed by an IWB in general and
in particular from our proposed solution.

Figure 52: Did you know the Interactive Whiteboard?. In this figure we represent how
many user already known the IWB.

We asked also if they think the IWB is a useful tool for teaching activities and
improving the quality of lessons, the different opinions are reported in Figure
54. Only a few of them are pretty sure it can helps to improve the traditional
education methodology but the majority of the users involved in the test consider
the IWB a good tool to increase the level of participation during the lessons at
school or university.

5.4 results and statistics 83

Figure 53: Have you ever used an Interactive Whiteboard?. In this figure we represent
how many user have already used the an IWB during their life.

Figure 54: In your personal opinion can be the Interactive Whiteboard useful for teach-
ing?. In this figure we represent how many user consider the IWB a useful
tool to support teaching activities.

84 validation

5.4.4 Calibration phase

In the previous sections we have seen all the “background" informations rel-
ative to the users we collected through the questionnaire proposed during the
tests. The data presented until this point can be defined as “outline" in the sense
it supports the key informations presented in this section. Here we will report
the results relative to the completion of the calibration stage subdivided for each
attempt. As you can see from Figure 55 the users took at maximum three tentative
to complete the calibration phase and the majority have completed it in two attempts.
During the first attempt we noted the fact that most of the user had troubles with
the mouse click to fix the calibration point because click with a mouse in the air
can be tricky and they missed some points. Hence, we didn’t label this problem
as malfunctioning of the tracking system but we simply said the user aren’t able
to complete the calibration phase due to the fact they have missed a point be-
cause click on a mouse in the air is not precise as we wish. In the future we will
need to change the device used for clicking and fixing the calibration point. We
used a mouse because the university didn’t provide us other specific and suitable
devices.

Figure 55: Calibration phase. In this figure we represent the number of attempt the
various users take to complete the calibration.

5.4 results and statistics 85

5.4.5 Utilization phase

During every test session we requested to the various users to perform some
predefined actions or activities to see if they was able to do that, the result obtained
are proposed in Figure 56. The majority of the users was able to perform without
problems the action we suggested, some of them encountered some difficulties
only during writing with Ardesia. The outcome of the calibration phase has in-
fluenced a lot the possibility to perform the predefined actions: if the user has
fixed the points in the right way during the calibration the mapping with the
mouse was very precise, hence open a folder or click on a link was a very simple
operation. We want to cite a specific case to help you understand what means per-
form a good calibration, for example the videomaker, who has taken part to our
tests, has performed a very precise calibration, this fact has enabled him to obtain
a precise mapping and during the writing phase he draw without difficulties a
beautiful picture using Ardesia.

5.4.6 Final opinion of the user

We are at the end of the validation data collected during the test phase. The
last two questions we have asked to the user concerns what they think about the
usability of the device and if it can be suitable to support and improve teaching
activities. As you can see from Figure 57 and 58 the user have a positive opinion
in both the cases. We hope this can be somehow derived form the fact they had a
positive experience with our software to emulate an IWB.

86 validation

Figure 56: Utilization phase. In this figure we present the results obtained during the test
phase, in this case we asked to the various users to perform some predefined
actions or activities to see if they was able to do that.

5.4 results and statistics 87

Figure 57: Is easy to interact with the Kinect?. In figure it is illustrated what the user
think about the usability of the Kinect.

Figure 58: Is the Kinect useful in education?. In this picture you can see what the user
think about a possible application of the Kinect in the education field to sup-
port teaching activities.

6 C O N C L U S I O N S A N D F U T U R E W O R K S

The aim of this thesis was to understand the possibility to introduce the Kinect
as a concrete tool to support teaching activities and built a low-cost emulation of
an IWB. The obtained results are satisfactory and they enable us to say we were
able to achieve the objectives we fixed in advance before starting to develop this
project. Maybe we needed to accept some compromises due to the fact this is a
completely new technology and paradigm of interaction and we had to cope with
some problems initially we didn’t expected. The fact this is a fresh technology
and all the world directly connected is also fresh itself could initially create some
problems and it can be a little bit destabilized, but as you can see from this thesis
the possibility to build concrete tools is already a reality. Certainly this technology
needs to be improved a lot before becoming a stable tool in the educational world
but it is in rapid development, hence early we will see the first Kinect-based appli-
cations appearing on the market, proposing low-cost solution in different fields
and probably also in this one. During the progress of this thesis we provided to
the reader an overview of this new technology, the basis to start interacting with
this kind of devices based on Natural Interaction (NI) paradigms and create your
first Kinect-based application. This thesis can be defined as an input point to this
amazing world and surely not the last word.

6.1 future works

This thesis is the first step in the complex process to create Kinect-based appli-
cation and produce low-cost solution to emulate the traditional expensive IWBs
present on the actual market. Certainly in the future the hardware and the frame-
works designed to interact with it will be subjected to huge improvements. Hence,
we can leave to our successors a list of possible directions they can take to con-
tinue exploring this amazing field of research. Let’s go down into details defining
some possible activities and tasks for the future:

1. upgrade the SimpleOpenNI wrapper, installing new version of OpenNI and
NITE because new versions will be released rapidly;

2. develop a similar solution basing the development the Microsoft SDK, in
order to have a clear tool of comparison on the performance of the tracking
system;

89

90 conclusions and future works

3. another solution can be put the Kinect in a different position, maybe on
top of the board or retry a frontal approach adding a gesture control for
different type of activities;

4. try remove completely the use of any kind of device;

5. design different “modality" of utilization, for example define a “writing
mode" with some specific parameters to enable a faster recognition remov-
ing some smoothing;

6. work on the parameters of smoothing and approximation to reduce the
delay introduced at the minimum;

7. add a custom configuration of the points used during the configuration
enabling the fact a point can be corrected in the case is missed or fixed
badly.

A I N S TA L L AT I O N

In this section we will list all the installation procedures needed to install the
OpenNI and NITE framework used as reference framework for this thesis. We
will indicate what you need to install the SimpleOpenNI library and Processing to
start try the first examples based on this library. The application we developed
to emulate an IWB doesn’t require to install the Processing environment and Sim-
pleOpenNI, it’s only requested the installation of OpenNI and NITE, all the other
libraries are already included in the project. We have already packaged the appli-
cation for the different operative systems.

Before start describing all the installation procedures we will report all the
different versions of the software we have used during our implementation:

• OpenNI v1.1.041;

• Nite v1.3.1.5;

• avin2-SensorKinect-28738dc;

• SimpleOpenNI Version 0.20;

The versions reported above are not the last one, hence online you will find the
most recent, using the various versions listed above we are sure the software
works, with the new versions we didn’t already tested. We know the fact that the
developer of the SimpleOpenNI library is working on a porting to better support
the new versions of OpenNI and NITE.

a.1 installing on windows

a.1.1 Installing Kinect driver on Windows

The first step is to install the Kinect driver:

1. download the driver from
https://github.com/avin2/SensorKinect;

2. inside the Bin folder you will find all the binaries for the different operating
systems;

91

https://github.com/avin2/SensorKinect

92 installation

3. install the binary for Windows, we suggested to use the 32 bit version at the
moment.

a.1.2 Installing OpenNI on Windows

In order to install OpenNI on Windows you need:

1. download the latest stable or unstable OpenNI binaries from OpenNI website
at http://www.openni.org/Downloads.aspx;

2. install the binary for Windows, we suggested to use the 32 bit version at the
moment.

a.1.3 Installing NITE on Windows

In order to install NITE on Windows you need:

1. download the latest stable or unstable NITE binaries from OpenNI website
at http://www.openni.org/Downloads/OpenNIModules.aspx, you
need to select the option in the combo with the wording OpenNI Compliant
Middleware Binaries;

2. install the binary for Windows, we suggested to use the 32 bit version at the
moment;

3. some versions of the NITE installer ask you for a key: insert
0KOIk2JeIBYClPWVnMoRKn5cdY4=.

a.1.4 Trying out the OpenNI and NITE samples on Windows

If you want to run the OpenNI samples navigate to C:\ProgramFiles\

OpenNI\Samples\Bin\Release and try out the demo applications. The NITE
demos are stored in C:\ProgramFiles\PrimeSense\NITE\Samples\Bin\

Release.

a.1.5 Installing Processing on Windows

As we have previously mentioned this operation is not necessary if you want to
run the proposed emulation but we report these instructions in the case you want
to test some of the SimpleOpeNI examples or create your customized Processing
code.

In order to install Processing on Windows you need:

http://www.openni.org/Downloads.aspx
http://www.openni.org/Downloads/OpenNIModules.aspx

a.2 installing on os x 93

1. download the latest version of the binaries from Processing website at
http://processing.org/download/ ;

2. install the binary for Windows, we suggested to take the version without
Java.

a.1.6 Installing SimpleOpenNI on Windows

As we have previously mentioned this operation is not necessary if you
want to run the proposed emulation but we report these instructions in the
case you want to test some of the SimpleOpeNI examples or create your cus-
tomized Processing code based on the library. On the SimpleOpenNI website
at http://code.google.com/p/simple-openni/wiki/Installation are indicated the basic in-
struction to install the library on Windows.

The main operation you need to perform once you have dowloaded the library:

• copy the SimpleOpenNI.zip into
C:\Users\’yourusername’\Documents\Processing\libraries;

• if you don’t have this folder then create it.

a.1.7 Run the IWB emulation

If you wan to run our proposed emulation of an IWB, you must simply run the
bat script inside our packaged application.

a.2 installing on os x

Before start installing the OpenNI/NITE framework we need to satisfy some
prerequisites.

Macports is required to be installed. Please check http://www.macports.

org/ for its own dependencies and installation procedure. It requires XCode and
would need to be installed on your Mac:

• Xcode

• MacPorts

With macports installed and ports list updated install libtool and libusb-devel:

1. sudo port install git-core

2. sudo port install libtool

http://www.macports.org/
http://www.macports.org/
http://developer.apple.com/technologies/tools/
http://www.macports.org/

94 installation

3. sudo port install libusb-devel +universal

4. mkdir Kinect

Installing Kinect driver on OS X

The first step is to install the Kinect driver:

1. mkdir Kinect/SensorKinect

2. cd SensorKinect

3. download the driver from
https://github.com/avin2/SensorKinect

4. inside the Bin folder you will find all the binaries for the different operating
systems

5. tar xzvf avin2-SensorKinect-28738dc.tar.gz

6. cd avin2-SensorKinect-28738dc/Bin/

7. tar SensorKinect-Bin-MacOSX-v5.0.1.32.tar.bz2

8. cd SensorKinect-Bin-MacOSX-v5.0.1.32

9. sudo ./install.sh

a.2.1 Installing OpenNI on OS X

Now, we can start installing OpenNI:

1. mkdir Kinect/OpenNI

2. cd OpenNI

3. download the latest stable or unstable OpenNI binaries for Mac OS X from
OpenNI website at http://www.openni.org/Downloads.aspx;

4. tar xvf OpenNI-Bin-MacOSX-v1.1.0.41.tar.bz2

5. cd OpenNI-Bin-MacOSX-v1.1.0.41

6. sudo ./install.sh

This will install the OpenNI libraries at /usr/lib.

https://github.com/avin2/SensorKinect
http://www.openni.org/Downloads.aspx

a.2 installing on os x 95

a.2.2 Installing NITE on OS X

In order to install NITE on OS X you need:

1. mkdir Kinect/NITE

2. cd NITE

3. download the latest stable or unstable NITE binaries from OpenNI website
at http://www.openni.org/Downloads/OpenNIModules.aspx, you
need to select the option in the combo with the wording OpenNI Compliant
Middleware Binaries;

4. tar xvf NITE-Bin-MacOSX-v1.3.1.5.tar.bz2

5. cd Nite-1.3.1.5

6. sudo ./install.sh

During installation, provide the following (free) PrimeSense key if requested:
0KOIk2JeIBYClPWVnMoRKn5cdY4=.

a.2.3 Trying out the samples on OS X

If you want to run the OpenNI samples navigate to OpenNI/Samples/Bin/

Release and try out the demo applications. The NITE demos are stored in
NITE/Samples/Bin/Release.

a.2.4 Installing Processing on OS X

As we have previously mentioned this operation is not necessary if you want to
run the proposed emulation but we report these instructions in the case you want
to test some of the SimpleOpeNI examples or create your customized Processing
code.

In order to install Processing on OS X you need:

1. download the latest version of the binaries from Processing website at http:
//processing.org/download/;

2. install the binary for OS X, we suggested to take the version without Java.

a.2.5 Installing SimpleOpenNI on OS X

As we have previously mentioned this operation is not necessary if you want
to run the proposed emulation but we report these instructions in the case you

http://www.openni.org/Downloads/OpenNIModules.aspx
http://processing.org/download/
http://processing.org/download/

96 installation

want to test some of the SimpleOpeNI examples or create your customized Process-
ing code based on the library. On the SimpleOpenNI website at http://code.
google.com/p/simple-openni/wiki/Installation are indicated the ba-
sic instruction to install the library on OS X.

The main operation you need to perform once you have dowloaded the library:

• copy the SimpleOpenNI.zip into /Users/’your
username’/Documents/Processing/libraries;

• if you don’t have this folder then create it.

a.2.6 Run the IWB emulation

If you wan to run our proposed emulation of an IWB, you must simply run the
sh script (sh run.sh) inside our packaged application.

a.3 installing on linux

We tested the installation on both 32 and 64 bit Linux and without no serious
problems but we suggest to use a 32 bit version. We would recommend Ubuntu
10.10 or greater. We had done the installation on Ubuntu 11.04.

Before start installing the OpenNI/NITE framework we need to satisfy some
prerequisites.

We suggest to update your Linux distribution before to start with the well-
known command:

sudo apt-get update

You need to install these files which are necessary for proper installation of
drivers:

1. sudo apt-get install mono-complete

2. sudo apt-get install libusb-1.0-0-dev

3. sudo apt-get install freeglut3-dev

4. mkdir Kinect

a.3.1 Installing Kinect driver on Linux

1. mkdir Kinect/SensorKinect

2. cd SensorKinect

http://code.google.com/p/simple-openni/wiki/Installation
http://code.google.com/p/simple-openni/wiki/Installation

a.3 installing on linux 97

3. download the driver from
https://github.com/avin2/SensorKinect

4. inside the Bin folder you will find all the binaries for the different operating
systems

5. tar Sensor-Bin-Linux32-v5.0.1.32.tar.bz2

6. cd Sensor-Bin-Linux32-v5.0.1.32

7. cd Platform/Linux-x86/CreateRedist/

8. sudo ./RedistMaker

9. cd ../Redist

10. sudo ./install.sh

a.3.2 Installing OpenNI on Linux

Now, we can start installing OpenNI:

1. mkdir Kinect/OpenNI

2. cd OpenNI

3. download the latest stable or unstable OpenNI binaries for Mac OS X from
OpenNI website at http://www.openni.org/Downloads.aspx;

4. tar xvf OpenNI-Bin-Linux32-v1.1.0.41.tar.bz2

5. cd OpenNI-Bin-Linux32-v1.1.0.41

6. sudo ./install.sh

a.3.3 Installing NITE on Linux

In order to install NITE on OS X you need:

1. mkdir Kinect/NITE

2. cd NITE

3. download the latest stable or unstable NITE binaries from OpenNI website
at http://www.openni.org/Downloads/OpenNIModules.aspx, you
need to select the option in the combo with the wording OpenNI Compliant
Middleware Binaries;

https://github.com/avin2/SensorKinect
http://www.openni.org/Downloads.aspx
http://www.openni.org/Downloads/OpenNIModules.aspx

98 installation

4. tar xvf NITE-Bin-Linux32-v1.3.1.5.tar.bz2

5. cd Nite-1.3.1.5

6. sudo ./install.sh

Use this license if asked during the installation:
0KOIk2JeIBYClPWVnMoRKn5cdY4=.

a.3.4 Trying out the samples on OS X

If you want to run the OpenNI samples navigate to OpenNI/Samples/Bin/

Release and try out the demo applications. The NITE demos are stored in
NITE/Samples/Bin/Release.

Testing if everything is working fine Connect you kinect and run the samples
from the OpenNI folder cd /kinect/OpenNI/Samples/Bin/Release/ (assum-
ing the kinect folder is in home folder, otherwise go to the respective folder)
./NiViewer You should get the depth map and image stream on your window.

a.3.5 Installing Processing on Linux

As we have previously mentioned this operation is not necessary if you want to
run the proposed emulation but we report these instructions in the case you want
to test some of the SimpleOpeNI examples or create your customized Processing
code.

In order to install Processing on Linux you need:

1. download the latest version of the binaries from Processing website at http:
//processing.org/download/;

2. install the binary for Linux, we suggested to take the version without Java.

a.3.6 Installing SimpleOpenNI on Linux

As we have previously mentioned this operation is not necessary if you want
to run the proposed emulation but we report these instructions in the case you
want to test some of the SimpleOpeNI examples or create your customized Process-
ing code based on the library. On the SimpleOpenNI website at http://code.
google.com/p/simple-openni/wiki/Installation are indicated the ba-
sic instruction to install the library on Linux.

The main operation you need to perform once you have dowloaded the library:

• copy the SimpleOpenNI.zip into /sketchbook/libraries;

http://processing.org/download/
http://processing.org/download/
http://code.google.com/p/simple-openni/wiki/Installation
http://code.google.com/p/simple-openni/wiki/Installation

a.4 installing microsoft kinect sdk 99

• if you don’t have this folder then create it.

a.3.7 Run the IWB emulation

If you wan to run our proposed emulation of an IWB, you must simply run the
sh script (sh run.sh) inside our packaged application.

a.4 installing microsoft kinect sdk

a.4.1 System requirements

In this section we report some useful informations regarding the requirements
needed to run an application Kinect-based in the Windows environment, the soft-
ware requirements are specific for the Kinect for Windows Software Development
Kit (SDK) Beta but the hardware part can be taken in consideration as general
requirements when you are developing something involving the Kinect.

Hardware:

• 32 bit (x86) or 64 bit (x64) processor;

• dual-core 2.66-GHz or faster processor;

• dedicated USB 2.0 bus;

• 2 GB RAM;

• a special USB/power cabling as we have previously described in the section
2.1.3 when we talk about the Kinect hardware.

Software:

• Microsoft Visual Studio 2010 Express or other Visual Studio 2010 edition;

• .NET Framework 4.0.

For C++ Skeletal Viewer Samples:

• Microsoft DirectX SDK - June 2010 or later version;

• Runtime for Microsoft DirectX 9.

For Speech Samples:

• Microsoft Speech Platform Runtime, version 10.2, select 32-bit if you are
running 32-bit Windows. If you have 64-bit Windows, we suggest that you
install both the 32-bit and 64-bit runtime;

100 installation

• Microsoft Speech Platform - Software Development Kit, version 10.2, 32-bit
or 64-bit according to your Windows installation;

• Kinect for Windows Runtime Language Pack, version 0.9.

a.4.2 Installation

To install the SDK Beta we reported the instruction taken from http://

kinectforwindows.org/download/:

1. Make sure the Kinect device is not plugged in to the USB port on your
computer.

2. If you installed any previous Kinect for Windows SDK, uninstall it first. Sim-
ilarly, you must remove any other drivers for the Kinect device.

3. Close Visual Studio.

4. Note: You must close Visual Studio before installing the SDK and then
restart it after installation to pick up the KINECTSDK_DIR environment
variables that the SDK requires.

5. From the download location for the SDK Beta package, double-click the link
for your Windows installation: 32-bit or 64-bit.

6. Once the SDK has completed installing successfully, ensure your Kinect de-
vice is plugged in to an external power source then plug the Kinect into the
PC’s USB port.

7. The drivers will load automatically. Your Kinect should now be working
correctly.

8. To run the samples, ensure that the DirectX and Speech prerequisites are
installed. They are listed in the previous section.

http://kinectforwindows.org/download/
http://kinectforwindows.org/download/

B S O U R C E C O D E

b.1 first program

Listing B.1: DepthImage.pde

1 import SimpleOpenNI . * ;
2

3 SimpleOpenNI contex t ;
4

5 void setup ()
6 {
7 contex t = new SimpleOpenNI (t h i s) ;
8

9 // mirror i s by d e f a u l t enabled
10 contex t . se tMirror (t rue) ;
11

12 // enable depthMap generat ion
13 contex t . enableDepth (6 4 0 , 4 8 0 , 3 0) ;
14

15 // enable RGB image generat ion
16 contex t . enableRGB (6 4 0 , 4 8 0 , 3 0) ;
17

18 s i z e (contex t . depthWidth () + contex t . rgbWidth () + 10 , contex t . rgbHeight
()) ;

19 }
20

21 void draw ()
22 {
23 // update the cam
24 contex t . update () ;
25

26 background (2 0 0 , 0 , 0) ;
27

28 // draw depthImageMap
29 image (contex t . depthImage () , 0 , 0) ;
30

31 // draw RGBImageMap
32 image (contex t . rgbImage () , contex t . depthWidth () + 1 0 , 0) ;
33 }

b.2 skeletal tracking

101

102 source code

Listing B.2: User.pde

1 import SimpleOpenNI . * ;
2

3 SimpleOpenNI contex t ;
4

5 void setup ()
6 {
7 contex t = new SimpleOpenNI (t h i s) ;
8

9 // enable depthMap generat ion
10 contex t . enableDepth () ;
11

12 // enable ske le ton generat ion f o r a l l j o i n t s
13 contex t . enableUser (SimpleOpenNI . SKEL_PROFILE_ALL) ;
14

15 background (2 0 0 , 0 , 0) ;
16

17 s t roke (0 , 0 , 2 5 5) ;
18 strokeWeight (3) ;
19 smooth () ;
20

21 s i z e (contex t . depthWidth () , contex t . depthHeight ()) ;
22 }
23

24 void draw ()
25 {
26 // update the cam
27 contex t . update () ;
28

29 // draw depthImageMap
30 image (contex t . depthImage () , 0 , 0) ;
31

32 // draw the ske le ton i f i t ’ s a v a i l a b l e
33 i f (contex t . i sTrack ingSke le ton (1))
34 drawSkeleton (1) ;
35 }
36

37 // draw the ske le ton with the s e l e c t e d j o i n t s
38 void drawSkeleton (i n t userId)
39 {
40 // to get the 3d j o i n t data
41 /*
42 PVector j o i n t P o s = new PVector () ;
43 contex t . g e t J o i n t P o s i t i o n S k e l e t o n (userId , SimpleOpenNI . SKEL_NECK, j o i n t P o s

) ;
44 p r i n t l n (j o i n t P o s) ;
45 */
46

47 contex t . drawLimb (userId , SimpleOpenNI .SKEL_HEAD, SimpleOpenNI . SKEL_NECK
) ;

b.2 skeletal tracking 103

48

49 contex t . drawLimb (userId , SimpleOpenNI . SKEL_NECK, SimpleOpenNI .
SKEL_LEFT_SHOULDER) ;

50 contex t . drawLimb (userId , SimpleOpenNI . SKEL_LEFT_SHOULDER, SimpleOpenNI .
SKEL_LEFT_ELBOW) ;

51 contex t . drawLimb (userId , SimpleOpenNI . SKEL_LEFT_ELBOW, SimpleOpenNI .
SKEL_LEFT_HAND) ;

52

53 contex t . drawLimb (userId , SimpleOpenNI . SKEL_NECK, SimpleOpenNI .
SKEL_RIGHT_SHOULDER) ;

54 contex t . drawLimb (userId , SimpleOpenNI . SKEL_RIGHT_SHOULDER, SimpleOpenNI
. SKEL_RIGHT_ELBOW) ;

55 contex t . drawLimb (userId , SimpleOpenNI . SKEL_RIGHT_ELBOW, SimpleOpenNI .
SKEL_RIGHT_HAND) ;

56

57 contex t . drawLimb (userId , SimpleOpenNI . SKEL_LEFT_SHOULDER, SimpleOpenNI .
SKEL_TORSO) ;

58 contex t . drawLimb (userId , SimpleOpenNI . SKEL_RIGHT_SHOULDER, SimpleOpenNI
. SKEL_TORSO) ;

59

60 contex t . drawLimb (userId , SimpleOpenNI . SKEL_TORSO, SimpleOpenNI .
SKEL_LEFT_HIP) ;

61 contex t . drawLimb (userId , SimpleOpenNI . SKEL_LEFT_HIP , SimpleOpenNI .
SKEL_LEFT_KNEE) ;

62 contex t . drawLimb (userId , SimpleOpenNI . SKEL_LEFT_KNEE , SimpleOpenNI .
SKEL_LEFT_FOOT) ;

63

64 contex t . drawLimb (userId , SimpleOpenNI . SKEL_TORSO, SimpleOpenNI .
SKEL_RIGHT_HIP) ;

65 contex t . drawLimb (userId , SimpleOpenNI . SKEL_RIGHT_HIP , SimpleOpenNI .
SKEL_RIGHT_KNEE) ;

66 contex t . drawLimb (userId , SimpleOpenNI . SKEL_RIGHT_KNEE, SimpleOpenNI .
SKEL_RIGHT_FOOT) ;

67 }
68

69 // −−−

70 // SimpleOpenNI events
71

72 void onNewUser (i n t userId)
73 {
74 p r i n t l n ("onNewUser − userId : " + userId) ;
75 p r i n t l n (" s t a r t pose d e t e c t i o n ") ;
76

77 contex t . s t a r t P o s e D e t e c t i o n (" Ps i " , userId) ;
78 }
79

80 void onLostUser (i n t userId)
81 {
82 p r i n t l n (" onLostUser − userId : " + userId) ;
83 }

104 source code

84

85 void o n S t a r t C a l i b r a t i o n (i n t userId)
86 {
87 p r i n t l n (" o n S t a r t C a l i b r a t i o n − userId : " + userId) ;
88 }
89

90 void onEndCalibration (i n t userId , boolean s u c c e s s f u l l)
91 {
92 p r i n t l n (" onEndCalibration − userId : " + userId + " , s u c c e s s f u l l : " +

s u c c e s s f u l l) ;
93

94 i f (s u c c e s s f u l l)
95 {
96 p r i n t l n (" User c a l i b r a t e d ! ! ! ") ;
97 contex t . s t a r t T r a c k i n g S k e l e t o n (userId) ;
98 }
99 e lse

100 {
101 p r i n t l n (" Fa i l ed to c a l i b r a t e user ! ! ! ") ;
102 p r i n t l n (" S t a r t pose d e t e c t i o n ") ;
103 contex t . s t a r t P o s e D e t e c t i o n (" Ps i " , userId) ;
104 }
105 }
106

107 void onStartPose (S t r i n g pose , i n t userId)
108 {
109 p r i n t l n (" onStartPose − userId : " + userId + " , pose : " + pose) ;
110 p r i n t l n (" stop pose d e t e c t i o n ") ;
111

112 contex t . s topPoseDetect ion (userId) ;
113 contex t . r e q u e s t C a l i b r a t i o n S k e l e t o n (userId , t rue) ;
114

115 }
116

117 void onEndPose (S t r i n g pose , i n t userId)
118 {
119 p r i n t l n (" onEndPose − userId : " + userId + " , pose : " + pose) ;
120 }

b.3 eclipse integration

Listing B.3: Eclipse Intergration Example

1 public c l a s s Main extends PApplet {
2

3 //
−−−

4 // F i e l d s

b.3 eclipse integration 105

5 //
−−−

6

7 /* * The logger . */
8 private s t a t i c Logger logger = Logger . getLogger (Main . c l a s s) ;
9

10 /* * The conf ig window . */
11 private UIConfigurationWindow configWindow ;
12

13 /* * The k i n e c t . */
14 private PApplet k i n e c t ;
15

16 /* * The open k i n e c t . */
17 private PApplet openKinect ;
18

19 //
−−−

20 // Constructors
21 //

−−−

22

23 //
−−−

24 // Methods
25 //

−−−

26

27 // c o n s t r u c t o r
28 /* (non−Javadoc)
29 * @see process ing . core . PApplet# setup ()
30 */
31 public void setup () {
32

33 s i z e (5 0 , 50) ;
34

35 logger . debug ("−−− Enter ") ;
36

37 // openKinect = new T i l t () ;
38 // openKinect . i n i t () ;
39

40 k i n e c t = new KinectBackSkeleton () ;
41

42 configWindow = new UIConfigurationWindow (k i n e c t) ;
43

44 logger . debug ("−−− E x i t ") ;

106 source code

45 }
46

47 //
−−−

48 // Main method
49 //

−−−

50

51 /* *
52 * The main method .
53 *
54 * @param args the arguments
55 */
56 public s t a t i c void main (S t r i n g args []) {
57 logger . debug ("−−− Enter − Paramenters = args : " + args . t o S t r i n g ()) ;
58

59 PApplet . main (new S t r i n g [] { "−−present " , " i t . unitn . k i n e c t . Main " }) ;
60

61 logger . debug ("−−− E x i t ") ;
62 }
63

64 @Override
65 public void destroy () {
66 k i n e c t . destroy () ;
67 super . destroy () ;
68 }
69 }

b.4 background removal

Listing B.4: Background removal function

1 /* *
2 * Draw user .
3 */
4 void drawUser () {
5

6 // r e t r i e v e the current image from the RGB camera
7 rgbImage = k i n e c t . rgbImage () ;
8

9 // load the p i x e l composing the colored image coming from the RGB
camera

10 rgbImage . l o a d P i x e l s () ;
11

12 // f ind out what are the p i x e l s belonging to each s i n g l e user
13 userMap = k i n e c t . g e t U s e r s P i x e l s (SimpleOpenNI . USERS_ALL) ;
14

15 // populate the new image p i x e l array

b.5 state context 107

16 for (i n t y = 0 ; y < k i n e c t . rgbHeight () ; y += 1) {
17 for (i n t x = 0 ; x < k i n e c t . rgbWidth () ; x += 1) {
18 i n t i = x + y * k i n e c t . rgbWidth () ;
19 i f (userMap [i] != 0) {
20 // i f i s a p i x e l belonging to the user copy the
21 // correspondent p i x e l in the RGB image in the new user
22 // image
23 userImage . p i x e l s [i] = rgbImage . p i x e l s [i] ;
24 } e lse {
25 // e l s e take a black p i x e l
26 userImage . p i x e l s [i] = 0 x00000000 ;
27 }
28 }
29 }
30

31 // update the p i x e l in the RGB image
32 rgbImage . updatePixels () ;
33

34 // update the new image p i x e l s
35 userImage . updatePixels () ;
36

37 // load the new user image in the feedback window in p o s i t i o n 0 ,0
38 image (userImage , 0 , 0) ;
39

40 }

b.5 state context

Listing B.5: State Context

1 public c l a s s Sta teContext {
2

3 /* * The s t a t e . */
4 private S t a t e s t a t e ;
5

6 /* * The t o t a l point number . */
7 private i n t totalPointNumber ;
8

9 // Creates a new Context with the s p e c i f i e d s t a t e .
10 /* *
11 * I n s t a n t i a t e s a new s t a t e contex t .
12 *
13 * @param s t a t e the s t a t e
14 * @param totalPointNumber the t o t a l point number
15 */
16 public Sta teContext (S t a t e s t a t e , i n t totalPointNumber) {
17 t h i s . s t a t e = s t a t e ;
18 t h i s . totalPointNumber = totalPointNumber ;
19 }
20

108 source code

21 // Returns the s t a t e .
22 /* *
23 * Gets the s t a t e .
24 *
25 * @return the s t a t e
26 */
27 public S t a t e g e t S t a t e () {
28 return s t a t e ;
29 }
30

31 // S e t s the s t a t e .
32 /* *
33 * S e t s the s t a t e .
34 *
35 * @param s t a t e the new s t a t e
36 */
37 public void s e t S t a t e (S t a t e s t a t e) {
38 t h i s . s t a t e = s t a t e ;
39 }
40

41 /* *
42 * The next () method performs performs a s t a t e t r a n s i t i o n to the next

s t a t e .
43 * Using the S t a t e pattern , we delegate t h i s behavior to our current

s t a t e
44 * o b j e c t .
45 */
46 public void next () {
47 s t a t e . next (t h i s) ;
48 }
49

50 /* *
51 * Gets the t o t a l point number .
52 *
53 * @return the t o t a l point number
54 */
55 public i n t getTotalPointNumber () {
56 return totalPointNumber ;
57 }
58

59 /* *
60 * S e t s the t o t a l point number .
61 *
62 * @param totalPointNumber the new t o t a l point number
63 */
64 public void setTotalPointNumber (i n t totalPointNumber) {
65 t h i s . totalPointNumber = totalPointNumber ;
66 }

B I B L I O G R A P H Y

[1] 3M (2008), Dispersive Signal Touch Technology - Technology Profile, URL
http://multimedia.3m.com/mws/mediawebserver?mwsId=

66666UuZjcFSLXTtmxTXoxfaEVuQEcuZgVs6EVs6E666666--&fn=

DST%20Tech%20Profile.pdf, [Online; accessed 12-November-2011].

[2] Anoto Group AB (2011), «Anoto - THE TECHNOLOGY», URL http:

//www.anoto.com/the-technology-1.aspx, [Online; accessed 12-
November-2011].

[3] Borenstein, G. (2011), Making Things See, O’Reilly Media / Make,
URL http://shop.oreilly.com/product/0636920020684.do, [On-
line; accessed 12-November-2011].

[4] Brekelmans, J. (2011), «Microsoft Kinect SDK vs PrimeSense OpenNI», URL
http://www.brekel.com/?page_id=671, [Online; accessed 29-October-
2011].

[5] BusinessWire (2011), «PrimeSense Teams Up with ASUS to Bring In-
tuitive PC Entertainment to the Living Room with WAVI Xtion», URL
http://www.businesswire.com/news/home/20110103005276/en/

PrimeSense-Teams-ASUS-Bring-Intuitive-PC-Entertainment,
[Online; accessed 03-October-2011].

[6] Group, N. U. I. (2011), «Natural User Interface», URL http://

wiki.nuigroup.com/Natural_User_Interface, [Online; accessed 23-
October-2011].

[7] Han, J. Y. (2005), «Low-cost multi-touch sensing through frustrated total
internal reflection», in «Proceedings of the 18th annual ACM symposium
on User interface software and technology», UIST ’05, pp. 115–118, ACM,
New York, NY, USA, URL http://doi.acm.org/10.1145/1095034.

1095054, [Online; accessed 12-November-2011].

[8] Hinchman, W. (2011), «Kinect for Windows SDK beta vs.
OpenNI», URL http://labs.vectorform.com/2011/06/

windows-kinect-sdk-vs-openni-2/, [Online; accessed 29-October-
2011].

[9] Holzner, S. (2011), «State Design Pattern», URL http://sourcemaking.

com/design_patterns/state, [Online; accessed 12-November-2011].

109

http://multimedia.3m.com/mws/mediawebserver?mwsId=66666UuZjcFSLXTtmxTXoxfaEVuQEcuZgVs6EVs6E666666--&fn=DST%20Tech%20Profile.pdf
http://multimedia.3m.com/mws/mediawebserver?mwsId=66666UuZjcFSLXTtmxTXoxfaEVuQEcuZgVs6EVs6E666666--&fn=DST%20Tech%20Profile.pdf
http://multimedia.3m.com/mws/mediawebserver?mwsId=66666UuZjcFSLXTtmxTXoxfaEVuQEcuZgVs6EVs6E666666--&fn=DST%20Tech%20Profile.pdf
http://www.anoto.com/the-technology-1.aspx
http://www.anoto.com/the-technology-1.aspx
http://shop.oreilly.com/product/0636920020684.do
http://www.brekel.com/?page_id=671
http://www.businesswire.com/news/home/20110103005276/en/PrimeSense-Teams-ASUS-Bring-Intuitive-PC-Entertainment
http://www.businesswire.com/news/home/20110103005276/en/PrimeSense-Teams-ASUS-Bring-Intuitive-PC-Entertainment
http://wiki.nuigroup.com/Natural_User_Interface
http://wiki.nuigroup.com/Natural_User_Interface
http://doi.acm.org/10.1145/1095034.1095054
http://doi.acm.org/10.1145/1095034.1095054
http://labs.vectorform.com/2011/06/windows-kinect-sdk-vs-openni-2/
http://labs.vectorform.com/2011/06/windows-kinect-sdk-vs-openni-2/
http://sourcemaking.com/design_patterns/state
http://sourcemaking.com/design_patterns/state

110 bibliography

[10] Hsu, H. J. (2011), «The Potential of Kinect as Interactive Educational
Technology», in «2nd International Conference on Education and Manage-
ment Technology», vol. 13, pp. 334–338, IACSIT Press, Singapore, URL
http://www.ipedr.com/vol13/64-T10050.pdf, [Online; accessed 12-
November-2011].

[11] Karam, M. and Schraefel, M. (2005), «A taxonomy of Ges-
tures in Human Computer Interaction», Tech. rep., University of
Southampton, URL http://eprints.ecs.soton.ac.uk/11149/1/

GestureTaxonomyJuly21.pdf, [Online; accessed 13-October-2011].

[12] Khoshelham, K. (2011), «ACCURACY ANALYSIS OF KINECT
DEPTH DATA», Tech. rep., ITC Faculty of Geo-information Sci-
ence and Earth Observation, University of Twente., URL http:

//www.isprs.org/proceedings/XXXVIII/5-W12/Papers/ls2011_

submission_40.pdf, [Online; accessed 13-October-2011].

[13] Lee, J. C. (2008), «Johnny Chung Lee - Projects - Wii», URL http://www.

johnnylee.net/projects/wii/, [Online; accessed 12-November-2011].

[14] Microsoft (2011), «Kinect Sales Surpass Ten Million», URL
http://www.xbox.com/en-us/press/archive/2011/

0308-ten-million-kinects, [Online; accessed 03-October-2011].

[15] Microsoft News Center (2010), «PrimeSense Supplies 3-D-Sensing Tech-
nology to “Project Natal” for Xbox 360», URL http://www.microsoft.

com/Presspass/press/2010/mar10/03-31PrimeSensePR.mspx?

rss_fdn=Press%20Releases, [Online; accessed 03-October-2011].

[16] Mitchell, R. (2010), «PrimeSense releases open source drivers, middleware
that work with Kinect», URL http://www.joystiq.com/2010/12/10/

primesense-releases-open-source-drivers-middleware-for-kinect/,
[Online; accessed 03-October-2011].

[17] OpenNI (2011), OpenNI User Guide, OpenNI, version 3 ed., URL http:

//www.openni.org/images/stories/pdf/OpenNI_UserGuide_v3.

pdf, [Online; accessed 03-October-2011].

[18] Pilloli, P. (2011), «WiiLDOS - Wiki», URL http://wiildos.

wikispaces.com/, [Online; accessed 05-November-2011].

[19] PrimeSense (2010), Prime Sensor™NITE 1.3 Algorithms notes, PrimeSense Inc.,
version 1.0 ed., [Online; accessed 16-October-2011].

[20] PrimeSense (2010), Prime Sensor™NITE 1.3 Controls Programmer’s Guide,
PrimeSense Inc., version 1.0 ed., [Online; accessed 16-October-2011].

http://www.ipedr.com/vol13/64-T10050.pdf
http://eprints.ecs.soton.ac.uk/11149/1/GestureTaxonomyJuly21.pdf
http://eprints.ecs.soton.ac.uk/11149/1/GestureTaxonomyJuly21.pdf
http://www.isprs.org/proceedings/XXXVIII/5-W12/Papers/ls2011_submission_40.pdf
http://www.isprs.org/proceedings/XXXVIII/5-W12/Papers/ls2011_submission_40.pdf
http://www.isprs.org/proceedings/XXXVIII/5-W12/Papers/ls2011_submission_40.pdf
http://www.johnnylee.net/projects/wii/
http://www.johnnylee.net/projects/wii/
http://www.xbox.com/en-us/press/archive/2011/0308-ten-million-kinects
http://www.xbox.com/en-us/press/archive/2011/0308-ten-million-kinects
http://www.microsoft.com/Presspass/press/2010/mar10/03-31PrimeSensePR.mspx?rss_fdn=Press%20Releases
http://www.microsoft.com/Presspass/press/2010/mar10/03-31PrimeSensePR.mspx?rss_fdn=Press%20Releases
http://www.microsoft.com/Presspass/press/2010/mar10/03-31PrimeSensePR.mspx?rss_fdn=Press%20Releases
http://www.joystiq.com/2010/12/10/primesense-releases-open-source-drivers-middleware-for-kinect/
http://www.joystiq.com/2010/12/10/primesense-releases-open-source-drivers-middleware-for-kinect/
http://www.openni.org/images/stories/pdf/OpenNI_UserGuide_v3.pdf
http://www.openni.org/images/stories/pdf/OpenNI_UserGuide_v3.pdf
http://www.openni.org/images/stories/pdf/OpenNI_UserGuide_v3.pdf
http://wiildos.wikispaces.com/
http://wiildos.wikispaces.com/

bibliography 111

[21] PrimeSense (2011), PrimeSense™NITE Controls User Guide, PrimeSense Inc.,
version 1.0 ed., [Online; accessed 16-October-2011].

[22] Reas, C. and Fry, B. (2010), Getting Started with Processing, O’Reilly Media,
URL http://shop.oreilly.com/product/0636920000570.do, [On-
line; accessed 12-November-2011].

[23] Research, M. (2011), Programming Guide - Getting Started with the Kinect for
Windows SDK Beta from Microsoft Research, Microsoft, beta 1 draft version
1.1 ed., URL http://research.microsoft.com/en-us/um/redmond/

projects/kinectsdk/docs/ProgrammingGuide_KinectSDK.pdf,
[Online; accessed 03-October-2011].

[24] Ronchetti, M., Bosetti, M., Ruffoni, M. and Pilolli, P. (2010), «Potenzial-
ità di ingegnerizzazione della WiiLD», Tech. rep., University of Trento - De-
partment of Information Engineering and Computer Science, URL http://

sites.google.com/site/wii4dida/resources/Potenzialit%C3%

A0diingegnerizzazionedellaWiiLD.pdf?attredirects=0&d=1,
[Online; accessed 25-October-2011].

[25] Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R.,
Kipman, A. and Blake, A. (2011), «Real-Time Human Pose Recognition in
Parts from Single Depth Images», Microsoft Research, IEEE, URL http://

research.microsoft.com/apps/pubs/default.aspx?id=145347.

[26] Takahashi, D. (2009), «Microsoft games exec details how
Project Natal was born», URL http://venturebeat.

com/2009/06/02/microsoft-games-executive-\

describes-origins-of-project-natal-game-controls/, [On-
line; accessed 27-September-2011].

[27] Tech-FAQ (2011), «Interactive Whiteboard», URL http://www.tech-faq.

com/interactive-whiteboard.html, [Online; accessed 09-November-
2011].

[28] TechLearn (2011), «Interactive Whiteboards in Education», Tech. rep.,
Joint Information Systems Committee, URL http://www.jisc.ac.uk/

uploaded_documents/Interactivewhiteboards.pdf, [Online; ac-
cessed 05-November-2011].

[29] Ten, S. (2010), «How Kinect depth sensor works – stereo triangu-
lation?», URL http://mirror2image.wordpress.com/2010/11/30/

how-kinect-works-stereo-triangulation/, [Online; accessed 03-
October-2011].

http://shop.oreilly.com/product/0636920000570.do
http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/ProgrammingGuide_KinectSDK.pdf
http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/docs/ProgrammingGuide_KinectSDK.pdf
http://sites.google.com/site/wii4dida/resources/Potenzialit%C3%A0diingegnerizzazionedellaWiiLD.pdf?attredirects=0&d=1
http://sites.google.com/site/wii4dida/resources/Potenzialit%C3%A0diingegnerizzazionedellaWiiLD.pdf?attredirects=0&d=1
http://sites.google.com/site/wii4dida/resources/Potenzialit%C3%A0diingegnerizzazionedellaWiiLD.pdf?attredirects=0&d=1
http://research.microsoft.com/apps/pubs/default.aspx?id=145347
http://research.microsoft.com/apps/pubs/default.aspx?id=145347
http://venturebeat.com/2009/06/02/microsoft-games-executive-\describes-origins-of-project-natal-game-controls/
http://venturebeat.com/2009/06/02/microsoft-games-executive-\describes-origins-of-project-natal-game-controls/
http://venturebeat.com/2009/06/02/microsoft-games-executive-\describes-origins-of-project-natal-game-controls/
http://www.tech-faq.com/interactive-whiteboard.html
http://www.tech-faq.com/interactive-whiteboard.html
http://www.jisc.ac.uk/uploaded_documents/Interactivewhiteboards.pdf
http://www.jisc.ac.uk/uploaded_documents/Interactivewhiteboards.pdf
http://mirror2image.wordpress.com/2010/11/30/how-kinect-works-stereo-triangulation/
http://mirror2image.wordpress.com/2010/11/30/how-kinect-works-stereo-triangulation/

112 bibliography

[30] Valli, A. (2008), «Notes on Natural Interaction», Tech. rep., URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

108.7674&rep=rep1&type=pdf, [Online; accessed 23-October-2011].

[31] Warren, T. (2010), «Microsoft details early Windows 8 im-
provements to OEMs», URL http://www.neowin.net/news/

microsoft-details-early-windows-8-improvements-to-oems,
[Online; accessed 27-September-2011].

[32] Wikipedia (2011), «Interactive whiteboard — Wikipedia, The Free En-
cyclopedia», URL http://en.wikipedia.org/wiki/Interactive_

whiteboard, [Online; accessed 05-November-2011].

[33] Wikipedia (2011), «Processing (programming language) — Wikipedia,
The Free Encyclopedia», URL http://en.wikipedia.org/wiki/

Processing_%28programming_language%29, [Online; accessed 01-
November-2011].

[34] Wikipedia (2011), «ZCam — Wikipedia, The Free Encyclopedia», URL http:

//en.wikipedia.org/wiki/ZCam, [Online; accessed 03-October-2011].

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.7674&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.7674&rep=rep1&type=pdf
http://www.neowin.net/news/microsoft-details-early-windows-8-improvements-to-oems
http://www.neowin.net/news/microsoft-details-early-windows-8-improvements-to-oems
http://en.wikipedia.org/wiki/Interactive_whiteboard
http://en.wikipedia.org/wiki/Interactive_whiteboard
http://en.wikipedia.org/wiki/Processing_%28programming_language%29
http://en.wikipedia.org/wiki/Processing_%28programming_language%29
http://en.wikipedia.org/wiki/ZCam
http://en.wikipedia.org/wiki/ZCam

R I N G R A Z I A M E N T I

Qualcuno probabilmente resterà deluso ma sinceramente sono esausto, quindi
sarò molto breve. Non farò nomi ne cognomi così eviterò di dimenticarmi qual-
cuno. Colgo l’occasione per ringraziare tutte le persone che mi hanno perme-
sso di essere qui in questo momento a festeggiare questo importante traguardo
nella mia vita di studente e nella mia vita come persona: ringrazio quindi i miei
famigliari, la mia ragazza, i miei amici, i miei compagni di corso, il mio relatore, il
mio datore di lavoro, insomma tutte le persone che hanno contribuito, mi hanno
aiutato e mi hanno permesso di raggiungere questo importante traguardo come
può essere una Laurea Magistrale. Grazie di cuore, davvero.

113

	Frontespizio
	Contents
	List of Figures
	List of Tables
	List of Source Code
	List of Acronyms and Abbreviations
	Glossary
	1 Introduction
	1.1 Background and motivation
	1.2 Objectives
	1.3 Structure and contents

	2 Background
	2.1 Kinect
	2.1.1 Introduction
	2.1.2 History
	2.1.3 Kinect Hardware and Specification
	2.1.4 Operating modes

	2.2 Natural Interaction
	2.2.1 Introduction
	2.2.2 Gesture
	2.2.3 Gesture recognition
	2.2.4 Body Tracking
	2.2.5 Speech Recognition

	2.3 Interactive Whiteboards
	2.3.1 Introduction
	2.3.2 Technology
	2.3.3 WiiLD
	2.3.4 WiiLDOS

	3 Kinect frameworks
	3.1 OpenNI
	3.1.1 Introduction
	3.1.2 Modules
	3.1.3 Production nodes
	3.1.4 Production chains
	3.1.5 Capabilities
	3.1.6 Licensing

	3.2 NITE
	3.2.1 Introduction
	3.2.2 NITE Algorithms
	3.2.3 NITE Control Paradigms
	3.2.4 Licensing

	3.3 Kinect for Windows SDK Beta
	3.3.1 Introduction
	3.3.2 Features
	3.3.3 Licensing

	3.4 Others
	3.4.1 Introduction
	3.4.2 OpenKinect - Libfreenect
	3.4.3 FAAST
	3.4.4 ROS OpenNI
	3.4.5 As3Kinect

	3.5 Comparisons
	3.5.1 Introduction
	3.5.2 OpenNI/NITE Framework
	3.5.3 Kinect for Windows SDK Beta

	4 Developed system
	4.1 Proposed solution
	4.2 UML
	4.2.1 External view
	4.2.2 Internal view

	4.3 SimpleOpenNI
	4.3.1 Processing
	4.3.2 First Program
	4.3.3 Skeletal Tracking
	4.3.4 Eclipse

	4.4 System Architecture
	4.5 Development Process
	4.6 Implementation Details
	4.6.1 Background Removal
	4.6.2 Calibration
	4.6.3 Smoothing data
	4.6.4 Notification System
	4.6.5 Internationalization

	5 Validation
	5.1 Researchers' Night 2011
	5.2 Una Rete di Lavagne
	5.3 Presentation during Open Day
	5.4 Results and statistics
	5.4.1 Personal informations
	5.4.2 Kinect
	5.4.3 Interactive Whiteboard
	5.4.4 Calibration phase
	5.4.5 Utilization phase
	5.4.6 Final opinion of the user

	6 Conclusions and future works
	6.1 Future Works

	A Installation
	A.1 Installing on Windows
	A.1.1 Installing Kinect driver on Windows
	A.1.2 Installing OpenNI on Windows
	A.1.3 Installing NITE on Windows
	A.1.4 Trying out the OpenNI and NITE samples on Windows
	A.1.5 Installing Processing on Windows
	A.1.6 Installing SimpleOpenNI on Windows
	A.1.7 Run the IWB emulation

	A.2 Installing on OS X
	A.2.1 Installing OpenNI on OS X
	A.2.2 Installing NITE on OS X
	A.2.3 Trying out the samples on OS X
	A.2.4 Installing Processing on OS X
	A.2.5 Installing SimpleOpenNI on OS X
	A.2.6 Run the IWB emulation

	A.3 Installing on Linux
	A.3.1 Installing Kinect driver on Linux
	A.3.2 Installing OpenNI on Linux
	A.3.3 Installing NITE on Linux
	A.3.4 Trying out the samples on OS X
	A.3.5 Installing Processing on Linux
	A.3.6 Installing SimpleOpenNI on Linux
	A.3.7 Run the IWB emulation

	A.4 Installing Microsoft Kinect SDK
	A.4.1 System requirements
	A.4.2 Installation

	B Source Code
	B.1 First Program
	B.2 Skeletal Tracking
	B.3 Eclipse Integration
	B.4 Background Removal
	B.5 State Context

	Bibliography

