
Lectures On Demand: the architecture of a system for delivering traditional

lectures over the Web.

Mauro Dolzani and Marco Ronchetti

Dipartimento di Informatica e Telecomunicazioni

Università di Trento – Via Sommarive 14, 38050 Povo (TN) - Italy

mauro.dolzani@studenti.unitn.it, marco.ronchetti@unitn.it

Abstract: The rapid expansion of the Internet has finally brought a wider availability of large

bandwidth connections reaching the homes. This means that the content that can be delivered

through the Internet is dramatically changing. We run an experiment of eight whole university

courses: we web-cast the lectures, and also we made them asynchronously available both on-line

and off-line (on CD’s). We based our experiment two software systems: the first one, called e-

Presence, was developed at the University of Toronto, Canada. The second, called LODE, was

developed at the University of Trento: it was inspired by the experience gathered using e-Presence,

and incorporates a series of requirements that aim at overcoming some limitations we encountered

when using the first system. In this paper we describe requirements and architecture of the LODE

System.

1. The background: scenario and our experience

The availability of wide band Internet connections is a very recent achievement: in 2001 a paper presenting an e-

learning experience in Finland (the most advanced country in Europe, as far as technology access is concerned)

quoted “Synchronous communication or even delivery of asynchronous video lectures was out of question because

of the low bandwidths available at students’ homes” [1]. Over the last few years things are changing at a dramatic

pace: Point Topic’s latest analysis of the world DSL market [2] shows that the total number of DSL lines in the

world has doubled in less than 9 months. Overall, the cost of broadband fell by 22% worldwide over the past three

years. In USA, as of April 2004, more than half (52%) of a key demographic group - college educated people age 35

and younger - has broadband connections at home. Broadband penetration is currently at 28% in South Korea. In

Europe the largest penetration is in Belgium (19%). It's 13-15% in Germany, France, Italy and the United Kingdom

and in some smaller European countries. Broadband adoption is occurring at high speed, according to Point Topic

which finds a 55% year-over-year increase in the number of worldwide lines

In Italy we are also assisting to a mass adoption of DSL technology, thanks to a very aggressive advertisement

campaign run by all the major telecommunication companies operating in the country. It is now not uncommon for

an average family to have access to wide band connections. Moreover, even the effective bandwidth delivered on

DSL lines has increased in a significant manner over the last 12 months.

 It is therefore now becoming possible to deliver multimedia content on demand to a vast audience. This fact is

having a dramatic impact on the way Internet is perceived and used: for the first time we assist to the sale of direct

transmission of the videos of sporting events like soccer games over the Internet. It is probably the dawn of the TV

on-demand. Such scenario will of course also have a strong impact on e-learning, and we can today experiment new

paradigms that are made possible by the new technological achievements.

At the Università di Trento we tried to explore the possibilities offered by the new scenario. We experimented with

the on-line delivery of lectures. We considered a whole spectrum of computer-mediated delivery of didactic events,

going from real-time synchronous, to on-line asynchronous, to off line. Our goal was to evaluate costs and impact,

to understand what the most effective way to exploit the new opportunities is, and to gather requirements for

improving the application we used as a “first-order approximation”.

We started by using a research product of the Knowledge Media Design Institute (KMDI) of the University of

Toronto, Canada. Their system is called “ePresence”. Their main goal was to make web-casting highly interactive,

scalable and robust, engaging, and accessible both in real-time and later via structured, navigable, searchable

archives [3]. The client runs in a normal web browser, enhanced by a plug-in chosen among Real Player, Apple’s

QuickTime and Windows Media Player. E-Presence is designed to support manly events like MS PowerPoint-based

presentations, as reflected by its design. The idea is that the most important cognitive factors are the voice, carried

by an audio stream, and the slides that illustrates the concepts that the speaker is talking about. The actual video is

less important from the point of view of carrying information, although its presence may be very useful by showing

gesture, expressions, and contextual indications. Therefore the video carried by the system is small so as to save

bandwidth, but very fluid and sufficient for carrying the needed information. The most significant portion of the

screen is dedicated to an image of the PowerPoint slide, which can be enlarged in a pop-up window by double

clicking on it. The system allows webcasting events with a small delay (approx. 30 seconds). When the speaker

moves to a new slide, such slide is presented to the remote viewer. During webcast it is possible to interact with the

speaker by posing questions through an integrated chat. A mediator person sitting in the room where the events takes

place monitors the chat and delivers the questions to the speaker. The whole event (audio + video + slides) is saved

on disk, and after some post-processing is archived in a form suitable for on-line asynchronous viewing. When

accessing the events asynchronously, users see the video, the slides and also a list of the slides’ titles and a timeline.

Marks on the timeline show slide transitions and semantic marking of sections. Users can navigate the video by

clicking on the slides’ titles: the system synchronizes video and slide to reflect the user’s choice. Jumps to different

times can also be achieved by clicking on the time bar. A view of the system in asynchronous mode is presented in

Fig. 1.

Figure 1. A view of the ePresence client in asynchronous mode.

Over three semesters, we used the system to record all the lectures of seven courses, for a total of approximately 350

hours. Students’ feedback was excellent. Most of our students regularly follow the courses in class, but we also have

a number of working students who, due to their job, almost never show up in class. Such students range between 5

and 10 percent. They typically try to catch up by studying on books, on teacher’s notes and on other student’s notes.

The availability of asynchronous lectures is for them an extremely valuable resource, and they were simply

enthusiastic about the service. The initiative has however advantages also for “regular” students. Among them we

mention:

- the ability to recover lectures lost due to forced absence (e.g. illness);

- the possibility to chose a different temporal organization, deciding not to be present at some lecture (elective

absence);

- support for foreign students who might have difficulties with the Italian language (they would benefit from the

possibility of re-hearing portions of lectures);

- support for Italian students attending to courses given in English (some courses are);

- the possibility to review pieces of a lecture at any time, to check their understanding or their notes.

Early reports of our experience are available elsewhere [4,5].

2. Obtaining new requirements from our experience

Although we were quite happy with the e-Presence system, we found that one could imagine a system that was more

suited to our needs, even by dropping some of the nice features of the Canadian software. For instance, although we

can imagine situations in which synchronous webcasting would be precious, it was almost of no use in our case: if

students can attend lectures at the right time, they prefer to be in the classroom. If they cannot come, being able to

see the event in real time is not an important advantage, if they can anyhow attend to the event at any time starting

from a few hours later.

 We found instead necessary to support also those students who do not have a large bandwidth internet access in

their homes. Trento lies in the hearth of the Alps, and some of the valleys nearby are not yet served by DSL. Also,

DSL connections can be expensive for some families. Therefore to reach our goal we provided lecture collections on

CD-ROMs. A full 50-hours course fits on 6 CDs, or on a single DVD.

We needed to extend the concept of the repository for asynchronous fruition to include also a zipped downloadable

version of the files. A request in this sense came mostly by students living out of town, not having DSL at home but

having friends who do: for them the most convenient alternative was to ask their friend to download the image of a

CD using his/her fast lines, and burn the CD remotely avoiding the need to come to the University to get a physical

copy.

As we mentioned, the video carried by the ePresence system is small so as to save bandwidth. PowerPoint based

lectures this is more than enough. However in cases when the teacher moves to the blackboard, the small video

screen becomes a limit. Also, it is impossible to use the system for lectures that are fully based on the use of

blackboard. Having a larger size video was therefore among our wishes.

System transportability was an issue. The system we were using needed a server for delivering asynchronously the

material, and an acquisition station that was composed by two PC’s, both of them having an analog acquisition card

and a stream splitter: the video coming from an analog video camera was delivered though the splitter to both

machines: one was devoted to webcasting, the other to storing the video stream for later processing. The whole

system ended up being rather bulky and costly. We needed a more agile solution, to allow to set up the system in

less than 5 minutes between one lecture and the other. A lighter solution, based on a less noticeable infrastructure,

would also have minimize the (already small) impact on the lecture itself.

Another point was to make the system really easy to use for the operator who records the event. We want to keep as

low as possible the running costs of the system. Therefore we cannot require the presence of a technician, and we

would like to choose the operator among the students who are anyway present. The training time must be minimal,

the system should be as intuitive as possible. Also, the post-processing (i.e. the process that brings to the publication

of the acquired lecture) must be fully automated.

We needed to make it possible to integrate the system as a part of the Learning Management System, delegating to

the LMS the access control. The lectures are an important asset of the University, and as such they should be

protected. Different people have different feelings about this issue. Some teachers just do not care, and the are happy

to make their lectures freely available to anyone in the world, like many people do with learning material. Others

desire that only their students have the possibility of seeing the lectures. The system should allow for any desired

protection level, and the best option is to rely on the LMS for granting the correct rights to the users.

We needed more control on the production of the videos. For instance, some lectures have one or more frontal

sections, and other sections in which the teacher assigns some exercise to be done in class. While in this mode the

teacher goes around the class discussing with single students or with small groups, and helping them. For our goals

it does not make any sense to capture the exercise phase, so it should be possible to suspend and resume video

acquisition whenever needed. The software we were using, being principally concerned with webcasting, did not

foresee such possibility.

Editing the lectures must be possible. In some cases the teacher might want to delete a portion of the lecture. Also,

when re-using lectures over the next year some changes might be needed. When teaching, it often happens to have

topics that span over more than one lecture. Alternatively, a lecture might be composed by more fragments dealing

with different topics. It would be nice to recompose the material according to semantics rather than leaving it

organized like the temporal constraints dictated.

Another interesting feature is the possibility of attaching additional documents at any given time. Such feature could

have several uses. For instance the teacher could add additional notes, like clarification of some point, errata,

indications for further study etc. Also, it would be possible to allow students to attach annotations for personal use,

of for sharing them with friends, with all other students and/or with the teacher.

3. Architecture of the system

As a first choice we decided to focus on asynchronous delivery, leaving aside for the moment the simultaneous

video acquisition and webcasting, since this last feature is not really necessary for our goals (though we designed the

new system leaving an open possibility to add that feature later, as a complement to the system).

An important decision regarded the target hardware for the video acquisition. As we mentioned, it was for us very

important to choose a low-cost hardware setting that could be easily movable. In this sense, a laptop would be ideal.

Moreover, most laptops today come with an IEEE 1394 (also known as FireWire or i.Link) port. With such port,

interconnecting a digital camcorder becomes matter of a cable (as opposed to attaching analog camcorders to PC’s,

which requires an expensive video acquisition card). We found that Pentium-4 based laptops with enough memory

(512 MB at minimum, better if 768 MB) and a clock frequency of at least 2 Gigahertz would offer enough power to

deal with real-time acquisition. A device for accessing wireless network can be useful. We also found that Centrino-

based laptop under Linux seem to currently have some problems in delivering the expected performance for this

kind of applications. The hardware choice also meets our budget requirements: the whole hardware setting,

composed by a laptop, a digital camera, a radio-microphone and the needed cables costs now approximately 2000

Euros.

Another important technical decision regarded the choice of the video stream type. We decided to use MPEG 4, as it

offers the possibility of coding video at a good resolution while maintaining a relatively low bandwidth occupation.

MPEG 4 is supported by Apple QuickTime, which became our favorite plug-in to be embedded in the client’s

browser. QuickTime is available for Apple Mac OS-X and for MS Windows. At present a porting on Linux is not

available: however in the Linux arena other MPEG-4 players are available, and the same is true for Unix, so that our

system can have clients on all major OS platforms.

Before proceeding to the description of the system architecture, it is useful to recall that what the final user sees is a

browser window that is composed by several parts, as shown in figure 2.

Figure 2. The main components on the client’s window.

The components are:

- the Video area where the video stream is shown;

- the Document area where the reference document is presented;

- the Document Titles area where the user can find the list of all documents presented during the video, and

by using them can quickly jump to the section where the chosen one starts being discussed;

- a time bar area where a progress bar runs giving a feeling of the elapsed time, and allows the user to jump

to different times with a click.

The layout is inherited from the ePresence project. In our case however the dimension of the Video and Document

areas can change on the flight on user’s demand. The user can chose among different video resolutions: small

(144x180 pixels) medium (288x384 pixels) or large (520x562 pixels). To make the enlargement of the video

possible, the document area is correspondingly reduced; in any case by double clicking on the document area the

user can have an enlarged version presented in a pop-up window. In any case the user can at any time switch to a

different configuration with just one click on a suitable button. Figure 3 shows three images of the screen captured

with the different options. As one can see, the blackboard becomes easily readable when the largest video area is

chosen. At present we are also evaluating a different layout, that is based on independent windows rather than on

HTML frames.

Figure 3: The LODE system showing video at three different resolutions.

The system is composed by several subsystems: OnStage, SlideConverter, Encoder, Publisher, WebServer,

VideoStreamer, DataStorage, ServiceBroker. The logical flow among the subsystems is pictorially shown in figure

4, and it will described in the rest of this section.

OnStage is the application that resides on the laptop. All the other services could reside on a single machine, or on a

battery of distributed PC’s to allow scaling the system. SlideConverter and Publisher are Java-RMI based services

that are made available on the network. Encoder is a deamon waiting receive on a socket data that need to be

encoded. WebServer and VideoStreamer are the servers accessed by the web clients. DataStorage contains the

DataBase where all the auxiliary data are made persistent. ServiceBroker allows to keep track and find the machines

on which the services are made available. For instance, several users accessing at the same time the streaming

service could lead to network congestion. Therefore it might be necessary to distribute instances of the streaming

server in several locations. Also, the videos require a large amount of disk space. When encoded in an MPEG4 file

at the quality level we need, an hour lecture requires approximately 100 Mbytes. A 50 hour course need therefore 5

Gbytes (which by the way happens to be approximately the size of a DVD: a fortunate coincidence). We are

currently planning to put on line the whole set of courses of the 5 years of the Computer Science basic and advanced

curricula, for a total of roughly 50 courses: 250 Gbytes of space. Such space allocation must be doubled since for

each course we need to put on line the version usable as a stream, and a version suitable for download that can be

copied on CD/DVD by students. It might be necessary to partition the whole storage on more than one machine. The

Service Broker (not shown in Fig.4) allows to make distribution and relocation of services fully transparent.

Figure 4: The logical flow among the subsystems

The operator that acquires the lecture uses the OnStage application. S/he needs to create a new lecture in a course,

and to associate one or more presenters to the lecture. Then s/he must associate material to the lecture. Typical

material is made of the slides that the speaker is going to present, converted in jpeg files, although in principle it

could be any kind of file that can be rendered by a web browser. For each element (file) a title must be provided, that

will appear in the list of topics. Conversion of a PowerPoint presentation in a set of jpeg files and automatic

extraction of the title of the slide is available as a Java RMI service provided by the SlideConversion subsystem.

These data are saved on persistent storage. The conversion is matter of seconds, so it is sufficient that the operator

gets a copy of the PowerPoint presentation just two minutes before the start of the lecture. After loading the

material, the operator sees two main panels: in one the images coming from the camcorder are presented, in the

second a list of the titles is shown. Whenever the speaker shows a new document, the operator just needs to click on

the corresponding title, and the document gets associated to the right time of the acquired video stream. All the

operator has to do is to make sure that the camera gets the desired image (pointing it correctly and operating its

zoom), check that the images and the sound are correctly acquired, and select the right document. Since in general it

is not necessary to move the camcorder a lot, we observed that these operations do not require a high cognitive load,

so that it is reasonably feasible for a student to follow the lecture while at the same time acquiring the video. During

the process the OnStage gets a video stream through the DV channel and splits it in two copies. One copy is used to

show on the laptop screen the acquired images, the other copy is used as input for an internal encoder that produces

on the flight a high-quality low-compression AVI file containing a MPEG-4 video and an MP3 audio stream. The

AVI file is saved on disk. The associated documents, as well as the temporal information that allow to associate the

right document to any given time, are saved on persistent storage. During the process the operator can suspend and

resume the acquisition of the stream at any time, and the temporal information is adjusted accordingly.

At the end of the lecture the OnStage process invokes the Encoder subsystem, and passes the AVI file to it. Encoder

processes it and produces an MEG4 file compressed at a higher rate. The resulting MPEG4 file is then published on

the streaming server. A link to the newly generated lecture is published on a web page. When the user clicks on the

corresponding link, a servlet get the necessary data from persistent storage, and includes a link to the suitable

resource on the streaming server.

Publisher has the duty to prepare the downloadable version of the lecture. It simulates a user’s request to the web

server, and creates a static version of the HTML pages with the embedded video that the web server sends as

response. Then it prepares a zipped version that can be used to download a whole lecture and produce a CD, and

publishes it on the web server.

OnStage

Web
Server

Video

Streamer

Encoder

Publisher

Data
Storage

Slide

Converter

An important point is that both Encoder and Publisher can run unsupervised. In such way, we’ve been able to cut

down the operator time needed to publish a lecture to a total time that is literally few minutes more than the lecture

itself. Since this has an impact on running costs of the system, we consider this to be an important achievement.

4. Implementation notes

We decided to base our system on the reuse of building blocks either existing as free software, or available for free.

We used Java for development of the glue, services and interfaces. We could not find platform-agnostic building

blocks. After examining what we could find for the Windows and for the Linux environments, we decided that tools

available for Linux fitted better our requirements. Therefore LODE was developed as a Linux-based system (though

the different subsystems could in principle live on different operating systems). We are still examining the

possibility of writing a Windows version of OnStage, mostly because a Linux environment could be unfamiliar for

many people, which contrasts with our requirement that the system should be usable with a very short training. In

the Linux arena, we found particularly useful three building blocks: FFmpeg (http://ffmpeg.sourceforge.net), the

Quasar DV codec – libdv (http://libdv.sourceforge.net/), and Mpeg4IP (http://mpeg4ip.sourceforge.net/).

Quasar is a software codec for DV video, the encoding format used by most digital camcorders. Libdv was

developed according to the official standards for DV video: IEC 61834 and SMPTE 314M. We found especially

useful the application playdv that allows playing a raw DV stream on the video of the PC, and permits to reduce the

CPU load by reducing the reproduction quality. We use it within OnStage only to monitor the acquisition process: a

low quality in this phase is not a problem, and the quality of the saved stream is anyhow not affected.

FFmpeg is a fast video and audio converter, that can grab from a live audio/video source. Several parameters can be

modified to adjust the quality/compression of the encoded streams. It gets a raw DV streams and produces an AVI

file containing a MPEG-4 video and an MP3 audio stream. We use it within OnStage to encode at high quality, and

within our Encoder subsystem to decode it.

The Encoder subsystem re-encodes the stream at lower quality as an MPEG4 file readable from QuickTime. Besides

this, Encoder implements a queue so that more lectures can be submitted for conversion without waiting the end of

active conversion processes. The reason why we pass through the double encoding process is that saving the original

DV stream would be impossible (it would require too much disk space). On the other hand, direct encoding at higher

compression would require too much CPU time. Moreover it is useful to be able to permanently save a high quality

copy that can be used for video editing, or for re-encoding at a different compression rate.

The second encoding process (the one that takes place within the Encoder subsystem) is done by using Mpeg4IP.

This software includes many existing open source packages and the "glue" to integrate them together. It is a tool for

streaming video and audio that is standards-oriented and free from proprietary protocols and extensions. In

particular, we use xvidenc to generate the new MPEG4 video stream and faac to generate the AAC audio stream.

Finally, by using mp4creator the .MP4 file is created.

The video streamer we choose is Darwin Streaming Server (http://developer.apple.com/darwin/projects/streaming/),

the open source version of Apple’s QuickTime Streaming Server technology that allows to send streaming media to

clients across the Internet using the industry standard RTP and RTSP protocols.

As a web server we chose Apache Jakarta Tomcat (http://jakarta.apache.org/tomcat/): the servlet/JSP container that

is used in the official Reference Implementation for the JavaServlets and JavaServer Pages technologies. Although a

standard web server would be enough, we preferred Tomcat because JSP make it easier to integrate with a Learning

Management System.

The Learning Management System we’re using was built in house. It is called eLeaf and has a set of standard

features, comprising the typical e-learning tools and environments. It integrates a module for giving some support to

mobile users [6]. It was developed on a three-tier architecture, with the business logic embedded in Enterprise Java

Beans and the presentation logic controlled by a combination of Struts and Tiles. Integration between LODE and

eLeaf can be achieved in different ways. The first option is to integrate LODE into eLeaf (sharing the same web

application “war” file) so that access to the pages generated by LODE can be controlled through the eLeaf

permission checking layer. Although such solution is highly satisfactory from the point of view of eLeaf, it binds

LODE to this particular LMS. A second solution is more general, although it requires the ability to add an active

module (e.g. a servlet) to a generic LMS. Such module should dynamically generate a URL that contains a single

parameter generated by encrypting together a time stamp and the data used by LODE (i.e. identification of course

and lecture), and should be configured in such way that it can be called only from within the LMS itself. In such

way, implicit user identification is achieved by embedding links to this servlet in pages whose permissions are

checked by the LMS. When the user clicks on such link, the control servlet is activated on the LMS side, the

dynamic parameter is generated and the request is forwarded to LODE. On the LODE side, a servlet only accepts

requests coming from a specified machine (the one hosting the LMS), decrypts the parameter and checks the

timestamp. If this is valid, it allows loading the lecture.

4. Conclusions.

LODE was built to harvest our experience in making traditional frontal lectures available asynchronously through

the Internet, while supporting also those students who do not have a fast Internet connection at home. It implements

all the requirements that we gathered while using a similar system over one and a half year. In particular, it allows

extending the model to lectures that are not based on PowerPoint presentations, since it offer a video that has a large

enough resolution to show the writing on a blackboard. Its acquisition module runs on low cost equipment based on

a laptop connected to a digital camcorder and to a radio microphone. The post-processing and publishing phase are

fully automated. The system was designed with special attention to minimize running costs and maximize ease of

use. LODE is in production since September 2004.

References.

[1] Haataja Arto, Kontkanen Sirpa, Suhonen Jarkko, Sutinen Erkki “Teaching University-Level Computer Science

to High School Students over the Web” ED-MEDIA 2001.

[2] The Point Topic Business DSL Report, published by Point Topic Ltd, Cardinal Tower, 12 Farringdon Road,

London EC1M 3HS, United Kingdom (www.point-topic.com)

[3] Baecker, R.M., Moore, G., Keating, D., and Zijdemans, A., (2003) Reinventing the Lecture: Webcasting made

Interactive, Proceedings of HCI International 2003, Crete (Greece), June 22-27 2003.

[4] Ronchetti M., "Using the Web for diffusing multimedia lectures: a case study." Proceedings of the "ED-MEDIA

2003" Conference, Honolulu, Hawaii, USA, June 23-28, 2003, p.337

[5] Ronchetti M., "Has the time come for using video-based lectures over the Internet? A Test-case report".

Proceedings of the IASTED International Conference "Computers and Advanced Technology in Education 2003",

Rhodes (Greece), June 30 - July 2, 2003, p. 305

[6] Colazzo, L., Molinari, A. and Ronchetti, M. “Integrating Mobile Devices in a multi-platform Learning

Management System using web services”, submitted to ED-MEDIA 2005.

