
Java	for	C#	programmers	

and	vice	versa…	

Acknowledgement:	some	content	taken	from		
http://www.javacamp.org/javavscsharp	

0:	General	considerations	

History	
A	great	many	Java	developers	considered	Microsoft's	Visual	J++	to	be	
the	most	productive	Java	IDE	(integrated	development	environment)	
on	the	market.		
	
The	settlement	of	a	lawsuit	(2001)	brought	by	Sun	Microsystems	
stopped	Visual	J++'s	evolution	in	its	tracks	and	appeared	to	end	
Microsoft's	involvement	with	Java.	
	
Microsoft	then	produced	J#,	and	more	or	less	at	the	same	time	C#...	
	
Curiosity:	Due	to	technical	limitations	of	display	(standard	fonts,	
browsers,	etc.)	and	the	fact	that	the	sharp	symbol	(U+266F	♯	MUSIC	
SHARP	SIGN	(HTML	♯))	is	not	present	on	most	keyboard	
layouts,	the	number	sign	(U+0023	#	NUMBER	SIGN	(HTML	#))	was	
chosen	to	approximate	the	sharp	symbol	in	the	written	name	of	the	
programming	language.	

Proprietary	language?	

C#	is	defined	by	ECMA	and	ISO	standards,	
whereas	Java	is	proprietary,	though	largely	
controlled	through	an	open	community	process.	
	
The	C#	API	is	completely	controlled	by	
Microsoft,	whereas	the	Java	API	is	managed	
through	an	open	community	process.	

Structure	

Image	by	dhaval.dalal@software-artisan.com		
	

Technology	stack	

Image	by	dhaval.dalal@software-artisan.com		
	

JDK	-	JRE	
JRE:	Java	Runtime	Environment.	It	is	basically	the	Java	Virtual	Machine	where	your	Java	
programs	run	on.	It	also	includes	browser	plugins	for	Applet	execution.	
	
JDK:	It's	the	full	featured	Software	Development	Kit	for	Java,	including	JRE,	and	the	
compilers	and	tools	(like	JavaDoc,	and	Java	Debugger)	to	create	and	compile	programs.	
	
Usually,	when	you	only	care	about	running	Java	programs	on	your	browser	or	computer	you	
will	only	install	JRE.	It's	all	you	need.	On	the	other	hand,	if	you	are	planning	to	do	some	Java	
programming,	you	will	also	need	JDK.	
	
	

JDK-JRE	
"The	JRE"	is	basically	a	bunch	of	directories	with	Java-related	files:	
	
/bin	with	executable	programs	like	java	and	(for	Windows)	javaw,	which	are	
essentially	the	program	that	is	the	Java	virtual	machine;	
	
/lib	with	a	large	number	of	supporting	files:	Some	jars,	configuration	files,	property	
files,	fonts,	sounds,	icons...	all	the	"trimmings"	of	Java.	Most	important	are	rt.jar	and	a	
possibly	a	few	of	its	siblings,	which	contain	the	"java	API,"	i.e.	the	Java	library	code.	
	
Somewhere	are	hidden	some	.DLLs	(for	Windows)	or	.so's	(Unix/Linux)	with	
supporting,	often	system-specific	native	binary	code.	
	
The	JDK	is	also	a	set	of	directories.	It	looks	a	lot	like	the	JRE	but	it	contains	a	directory	
(called	JRE)	with	a	complete	JRE,	and	it	has	a	number	of	development	tools,	most	
importantly	the	Java	compiler	javac	in	its	bin	directory.	

JDK	-	JRE	

1:	Contact	points	

Wow,	it’s	the	same	thing!	

The	languages	share	many	features:	

•  Object	orientation	
•  Same	ancestors	(C,	C++)	=>	same	grammar	

–  Some	people	say	C#	is	derived	from	Java	
•  Heap-based	classes	(but	C#	also	supports	stack-based	classes,	

called	value	types)	
•  Garbage	collection	
•  String	class	(strings	are	immutable)	
•  No	global	methods	and	variables	
•  Initialization	of	instance	and	static	variables.	
•  Superclass	(base	class)	constructor	call,	and	constructor	chaining	

(call	to	a	constructor	from	inside	another	constructor)		
•  Value	types	for	primitive	data	types,	reference	types	for	objects.	

2:	Trivial	differences:	
syntax	only	

trivial	but	annoying	differences…	

main	
Java	 C#	

public	static	void	main(String[]	args)	{…}	 static	void	Main(string[]	args)	{…}	

static	void	Main()	{…}	

static	int	Main(string[]	args)	{…}	

static	int	Main()	{…}	

Note:	as	a	convention:	
	method	names	are	lowercase	in	Java	and	uppercase	in	C#	
	class	names		are	uppercase	in	Java	and	lowercase	in	C#	

Print	statements	
Java	 C#	

System.out.println("Hello	world!");	 System.Console.WriteLine("Hello	
world!");	

Console.WriteLine("Hello	again!");	

Note:	as	a	convention:	
	method	names	are	lowercase	in	Java	and	uppercase	in	C#	
	class	names		are	uppercase	in	Java	and	lowercase	in	C#	

keywords	

goto	strictfp	

switch	

	
•  No	fall-through	in	C#,	exept	for	void	
statements	

•  Now	usable	with	strings	also	in	Java˜	

Java	 C#	

switch	(i)	{	
		case		1:	
		case		2:	
								a=1;	
		case	3:	
								b=2;	
								break;	
		case	4-7:	
							b=9;	
							break;	
		default:	
								c=3;	
}	

	
	
	
	
<=	fallback	is	not	allowed	for	non-empty	
cases	(break	is	missing)	

Switch	statements	with	String	cases	have	been	implemented	since	Java	SE	7	

Array	declarations	

Multidimensional	arrays	in	Java	and	C#	are	jagged	
 int[][]j2 = new int[3][];
 j2[0] = new int[] {1, 2, 3};
 j2[1] = new int[] {1, 2, 3, 4, 5, 6};
 j2[2]= new int[10];	
C#	also	has	rectangular	bidimensional	arrays	(more	efficient)	

Java	 C#	

int[]	iArray	=	new	int[100];		
float	fArray[]	=	new	float[100];		

int[]	iArray	=	new	int[100];		
	

int[][][] a3 = new int[20][20][30];	 int[][][] a3 = new int[20][20][30];	
int[,]	myRectangularArray	=	new	int[rows,	
columns];	

for	-	foreach	

 	

Java	 C#	

 int []	k={1,2,3};
 for (int z:k){
 System.out.println(z);
 }	

 int []	k={1,2,3};
 foreach	(int z in	k){
 System.Console.WriteLine(z);
 }	

for	(object	o:collection){…}	 foreach	(object	o	in	collection){…}	

Constants	
Java	 C#	

static	final	double	PI=3.1415926535;	 const	double	PI=3.1415926535;	

final	int	N=2;	 readonly	int	Z=24;	

C#:	
When	the	constant	needs	to	be	
initialized	at	run-time	use	the	
readonly	keyword	instead	of	
const.	

Java:	
Constants	with	values	which	
may	be	different	for	different	
instances	are	not	static.	

final/readonly	vars	can	only	be	set	at	declaration	time	or	in	the	constructor	

Packages-namespaces	

The	C#	package	structure	is	defined	using	namespaces	(just	like	
Java),	but	the	namespaces	do	NOT	have	to	reflect	the	directory	
structure.	
	
C#'s	namespaces	are	more	similar	to	those	in	C++.	Unlike	Java,	
the	namespace	does	not	specify	the	location	of	the	source	file.	
(Actually,	it's	not	strictly	necessary	for	a	Java	source	file	location	
to	mirror	its	package	directory	structure.)	
	
C#	has	the	ability	to	alias	namespaces.	

Java	 C#	

package	 namespace	

import	 using	

Packages-namespaces	nesting	
Only	in	C#:	namespace	syntax	also	allows	to	nest	namespaces	
	
using	System;	
		namespace	One{					
				public	class	MyClass	{…}	/*One.MyClass	*/	
				namespace	Two{	
							public	class	MyOtherClass	{…}	/*One.Two.	MyOtherClass	*/	
							}	//	end	of	namespace	Two	
			}	//	end	of	namespace	One	

Assemblies	

Java	 C#	

Assemblies	are	stored	as	JAR	archives	
(Java	ARchive:	zip	format	with	a	
manifest).	
	
A	JAR	can	contain	a	library,	or	can	be	an	
“executable”	file.	
	
Some	JAR	are	specialized	for	deployment	
in	containers:	
WAR	(Web	ARchive)	
EJB-JAR	(Entity	Beans	Archives)	
EAR	(Enterprise	ARchive)	

Assemblies	are	usually	stored	as	EXEs	or	
DLLs	

Boxing-Unboxing	
Java	 C#	

int	i	=	123;	
Object	o=i;	//	Object	o=123;	

int	i	=	123;	
object	o	=	i;	//	object	o=123;	

Object	o = 123;
int	i = (Integer)o;	
	
//	but	also	
Integer	o = 123;
int	i = o;	

object	o = 123;
int	i = (int)o;	

In	C#	unboxing	is	always	explicit	

varargs	
Java	 C#	

void	f(String	title,	Integer…args)	 void	f(string	title,	params	int[]	args)	

Invoking	Garbage	Collector	
Java	 C#	

System.gc()	 GC.Collect()	

Concurrency	-	synchronization	
Java	 C#	

synchronized	(this)	{	...	}	 lock	(this)	{	...	}	

synchronized	void	method()	{	...	}	 [MethodImpl(MethodImplOptions.Synchr
onized)]	
void	Method()	{	...	}	

Serialization	

[Serializable]:	is	used	to	mark	a	class	as	
serializable	and	is	similar	to	a	Java	class	
implementing	the	Serializable	interface.	
Put	[ScriptIgnore]	or	[NonSerialized]	attribute	on	
the	property	and	it	will	not	be	serialized.	
(transient	in	Java)	

Java	 C#	

MyClass	implements	Serializable	{	
					transient	Object	x;	
					…	
}	
	

[Serializable]	
myClass	{	
[ScriptIgnore]	
object	x;	
…	
}	

Class	loading	
Java	 C#	

Class	x=Class.forName(“class_name”);	
x.getInstance();	
	
ClassLoader.getResources()	

Activator.CreateInstance(Type	t)	
	
	
Assembly.Load()	

Run-time	type	identification	
Java	 C#	

if(x	instanceof	MyClass)	
			MyClass	mc	=	(MyClass)	x;	

if(x	is	MyClass)	
			MyClass	mc	=	(MyClass)	x;	

Metadata	
Java	 C#	

Class	
Class	klass	=	X.class;	//	call	on	class	
Class	klass=	x.getClass();	//call	on	instance	

Type		
Type	type	=	typeof(X);	//	call	on	class	
Type	type	=	i.GetType()	;	//call	on	instance	

Metainformation	
Java	 C#	

@Annotation	 [Attribute]	

3:	Java	features	absent	in	
C#	

There	is	no	such	a	thing	as…	

Cross	Platform	Portability:	
Write	Once,	Run	Anywhere	

Nested	classes	
Class	declaration	inside	another	class.	
Java	inner	class:		
for	each	instance	of	the	enclosing	class	there	exists	a	
corresponding	instance	of	the	inner	class	that	has	access	
to	the	enclosing	class's	instance	variables	and	contains	no	
static	methods.	
Java	static	nested	class:	
the	nested	class	has	access	to	the	static	members	and	
methods	of	the	enclosing	class.	
	
C#	ONLY	has	static	nested	classes.	

Anonymous	inner	classes	

btn.setOnAction(new	EventHandler<ActionEvent>()	{	
												@Override	
												public	void	handle(ActionEvent	event)	{	
																System.out.println("Hello	World!");	
												}	
								});	

4:	Simple	but	relevant	
differences	

Really	important	differences…	

Primitive	data	types	
•  Not	every	C#	primitive	type	has	a	corresponding	type	
in	Java:	Java	does	not	have	the	unsigned	types	(ulong,	
uint,	ushort	and	byte).	

•  The	corresponding	ones	hava	the	same	name	(except	
for	byte:	the	byte	type	in	Java	is	signed	and	is	thus	
analagous	to	the	sbyte	type	in	C#	and	not	the	byte	
type).	

•  C#	also	has	is	the	decimal	type,	a	type	which	stores	
decimal	numbers	without	rounding	errors	(at	the	cost	
of	more	space	and	less	speed).	

•  NOTE:	primitive	data	types	in	C#	are	subclasses	of	
object,	in	Java	they	are	not!	

Primitive	data	types	

•  NOTE:	primitive	data	types	in	C#	are	
subclasses	of	object,	in	Java	they	are	not!	

•  This	means	that	an	int	in	C#	inherits	all	the	
methods	of	object.		

•  It’s	important	to	realize,	however,	that	the	
primitive	types	are	still	value	types.	Boxing	
(the	conversion	of	a	value	type	to	a	reference	
type)	occurs	in	both	C#	and	Java.	

Big	numbers	

Both	Java	and	C#	have	BigInteger.		
It’s	for	precision	(large)	integers.	
	
Java	also	has,	but	C#	hasn’t,	BigDecimal.	
	

Access	modifier	
Java	 C#	

public	 Access	not	limited	 Access	not	limited	

protected	 Access	limited	to	the	
package	and	to	subclasses	
also	in	a	different	package	
	

Access	limited	to	the	
containing	class	and	its	
subclasses	

protected	internal	 Access	limited	to	this	
program	or	types	derived	
from	the	containing	class	

internal	 Access	limited	to	this	
program	(assembly)	

(no	access	modifier)	 	Access	limited	to	the	
package	

Same	as	private	

private	 Access	limited	to	the	
containing	type	

	Access	limited	to	the	
containing	type	

Friend	Assembly	(C#	only)	

The	friend	assembly	feature	allows	an	internal	
type	or	internal	member	of	an	assembly	to	be	
accessed	from	another	assembly.		
	
To	give	one	assembly	access	to	another	
assembly's	internal	types	and	members,	the	
[InternalsVisibleToAttribute]	attribute	is	used.	
	
	

Inheritance	
Java	 C#	

class	B	extends	A	implements	Comparable	
{…}	

class	B:A,	IComparable	

Note:	
	-			different	syntax	for	Interface	inheritance	and	class	inheritance	in	Java	
-  Usually	interfaces	names	start	with	I	in	C#	
-  For	both	Java	and	C#	inheritance	is		

-  SINGLE	for	classes	
-  MULTIPLE	for	Interfaces		

Java	 C#	

Everything	derives	from	Object.		
This	includes	classes	you	create,	
not	including	primitive	types.		

Everything	ultimately	derives	from	Object.		
This	includes	classes	you	create,		
as	well	as	value	types	such	as	int	or	
structs.	

Partial	classes:		a	C#	only	feature	

•  With	C#	you	can	define	a	class	across	multiple	
files.			

•  The	real	use	of	this	is	when	you	are	generating	
code	and	you	want	to	be	able	to	have	part	of	
a	class	generated,	but	still	have	the	other	part	
of	the	class	manually	controlled	and	
versioned.	

Unextendable	classes	
Java	 C#	

final	class	B	{…}	 sealed	class	B	{…}	

Static	constructor	
Java	 C#	

Class	StaticInitTest	{			
		static{	//	called	before	first	use	of	static	class	
				System.out.println("In	static	constructor");	
		}	
		…}	

Class	StaticInitTest	{		
		static	StaticInitTest(){	
				Console.WriteLine("In	static	constructor");	
		}	
		…}	

Destructor		
Non-Deterministic	Object	Cleanup	

Java	 C#	

finalize()		 ~X()

Constructor	chaining	
Java	 C#	

super()	 base()	

public	class	Child	extends	Parent	
{	
				public	Child()	{	
								super("param");	
								System.out.println("Child	Constructor.");	
				}	
		… super.f();…}	

public	class	Child	:	Parent	
{	
				public	Child()	:	base(”param")	
				{	
								Console.WriteLine("Child	Constructor.");	
				}	
		… base.f();…}	

In	C#,	destructors	automatically	call	the	base	class	destructor	after	executing,	
which	is	not	the	case	in	Java.	

Constraint	on	public	classes		

In	Java,	there	can	only	be	one	class	per	source	
file	that	has	public	access	and	it	must	have	the	
same	name	as	the	source	file.	
	
C#	does	not	have	such	constraint.	
	

Virtual	methods	
Java	 C#	

All	methods	are	by	default	virtual	and	you	
can	override	them	(dynamic	binding).	
	
Java	has	static	binding	for:	
final,	static	and	private	methods.	
	
You	can	annotate	overriding	methods:	
@Override	
public	void	myMethod()	{	...	}	
	
	
	

All	methods	are	non-virtual	(static	binding).	
	
To	override	a	method	in	the	parent	class,	
make	sure	the	method	of	the	parent	class	
is	defined	as	virtual	using	the	virtual	
keyword.	
	
class	MyParentClass	{	
				public	virtual	void	MyMethod()	{	...	}	
}	
In	the	child	class,	the	method	must	use	the	
override	keyword.	
	
class	MyChildClass	:	MyParentClass	{	
				public	override	void	MyMethod()	{	...	}	
}	

Enumerations	

•  Java	made	enumerations	just	like	classes,	
except	they	do	not	have	inheritance.			

•  C#	enumerations	are	more	along	the	lines	of	
C/C++	implementations	in	which	they	are	just	
basically	integers,	but	they	support	the	
ToString	method,	so	they	can		report	their	
value	as	string	(such	as	“North")	and	not	just	
an	an		integer.	

Java	 C#	

enum,	can	have	fields,	methods	and	
implement	interfaces	and	are	typesafe	

enum,	cannot	have	methods,	fields	or	
implement	interfaces,	not	typesafe		

Equality	check	
Java	 C#	

Value	equality:		b == a	
	
Reference	equality	(identity):		b==a;	
	
	
Equality	for	reference	types:	
override	Object.equals(Object)	
override		Object.hashcode()	
	
	

Value	equality:		b == a	
	
Reference	equality	(identity):	
System.Object.ReferenceEquals(a,	b);	
	
Equality	for	reference	types:	
override	Object.Equals(Object)	
override	Object.GetHashCode()	
	
Optionally		overload	the	==	and	!=	operators	
	
	
	
	

Generics	
•  Although,	the	Generics	feature	in	both	C#	and	Java	is	similar	

in	concept	to	templates	in	C++.	
•  Generics	in	Java	and	C#	looke	very	similar,	but	

implementations	are	however	quite	different.	

	
	
	
	
	
	
•  C#	implementation	is	also	more	efficient	(doesn’t	do	any	

cast).	

Java	 C#	

the	generic	functionality	is	implemented	
using	type	erasure.	The	generic	type	
information	is	present	at	compile	time,	
after	which	it	is	erased	and	all	the	type	
declarations	are	replaced	with	Object.	
Casts	are	automatically	inserted	in	the	right	
places.	Hence,	runtime	introspection	does	
not	reveal	the	generic.		

permits	full	runtime	introspection	of	
generic	types	and	generic	type	parameters	
(useful	e.g.	for	instance	creation	and	array	
creation).		

Weak	references	

For	an	explanation	see	also:
https://web.archive.org/web/20061130103858/http://weblogs.java.net/
blog/enicholas/archive/2006/05/understanding_w.html	

Java	 C#	

someCollection.add(inew	
WeakReference(new	MyData(i));	
	
Java	also	has:	
•  SoftReference	
•  PhantomReference	

someCollection.Add(new	
WeakReference(new	MyData(i));	

Different	operators:	>>>	and	->	
	
Java	only:		
The	>>>	operator	is	the	unsigned	right	bit-shift.	It	effectively	divides	
the	operand	by		2	to	the	power	of	the	right	operand.	
	
The	difference	between	>>	and	>>>	would	only	show	up	when	shifting	
negative	numbers.	The	>>	operator	shifts	a	1	bit	into	the	most	
significant	bit	if	it	was	a	1,	and	the	>>>	shifts	in	a	0	regardless.	
	
C#	only:	
The	->	operator	combines	pointer	dereferencing	and	member	access	
(as	in	C,	C++).	
The	->	operator	can	be	used	only	in	code	that	is	marked	as	unsafe.	
The	->	operator	cannot	be	overloaded.	
	
	
	

Checked-unchecked	exceptions	

The	checked	exceptions	that	a	method	may	
raise	are	part	of	the	method's	signature.	For	
instance,	if	a	method	might	throw	an	
IOException,	it	must	declare	this	fact	explicitly	in	
its	method	signature.	Failure	to	do	so	raises	a	
compile-time	error.	
	
C#	does	not	include	checked	exceptions,	Java	
does.	

throw/throws	

Nullable	types	(C#)	
A	nullable	types	is	an	instance	of	the	System.Nullable	type.		
	
A	nullable	type	can	represent	the	normal	range	of	values	for	
an	underlying	value	type	as	well	as	the	null	value.		
	
For	example,	the	type	Nullable<bool>	can	represent	the	
values	true,	false	and	null.		
	
A	nullable	type	can	be	declared	by	appending	the	operator	'?'	
to	the	name	of	a	value	type	when	declaring	the	variable.	
bool?	is	equivalent	to	Nullable<bool>.				

null	coalescing	operator:	??	(C#)	
string	pageTitle	=	suppliedTitle	??	"Default	Title";	
	
//	is	equivalent	to	
	
string	pageTitle	=	(suppliedTitle	!=	null)	?	suppliedTitle	:	
"Default	Title";	
	
//	and	is	equivalent	to	
	
string	pageTitle;	
if	(suppliedTitle	!=	null)	pageTitle	=	suppliedTitle;	
else		pageTitle	=	"Default	Title”;	

Same	in	Java	(Optional)	

String	myTitle=null;		
Optional<String>	suppliedTitle=Optional.ofNullable(myTitle);	
String	title	=	suppliedTitle.orElse("Default	Title");	
System.out.println(title);									
	
//	also:	
String	title2	=	suppliedTitle.orElseGet(()->	{	
												return	new	String("Default	Title2");});	
System.out.println(title2);	

Optional	has	several	other	methods	

Documentation	generation	
Java	 C#	

**	
	*	Calculates	the	square	of	a	number.		
	*	@param	num	the	number	to	calculate.		
	*	@return	the	square	of	the	number.		
	*	@exception	NumberTooBigException	this	
occurs	if	the	square	of	the	number		
	*	is	too	big	to	be	stored	in	an	int.		
	*/	
	public	static	int	square(int	num)	throws	
NumberTooBigException{}	
	

///<summary>Calculates	the	square	of	a	
number.</summary>	
///<param	name="num">The	number	to	
calculate.</param>	
///<return>The	square	of	the	number.	</return>	
///<exception>NumberTooBigException	-	this	
occurs	if	the	square	of	the	number		
///is	too	big	to	be	stored	in	an	int.	</exception>	
	public	static	int	square(int	num){}	

Javadoc	vs		C#	XML	
	

C#	XML	is	more	limited	than	Javadoc	

Documentation	generation	
Javadoc	allows	one	to	document	the	following	metadata	about	a	method:	
•  Description	of	the	method.	
•  Exceptions	thrown	by	the	method.	
•  Parameters	the	method	accepts	
•  Return	type	of	the	method.	
•  Associated	methods	and	members.	
•  Indication	as	to	whether	the	API	has	been	deprecated	or	not.	
•  Version	of	the	API	the	method	was	first	added.	
•  The	deprecated	information	is	also	used	by	the	compiler	which	issues	a	warning	if	a	call	to	a	

method	marked	with	the	deprecated	tag	is	encountered	during	compilation.		
	
Javadoc	also	provides	the	following	information	automatically:	
•  Inherited	API	
•  List	of	derived	classes	
•  List	of	implementing	classes	for	interfaces	
•  Serialized	form	of	the	class	
•  Alphabetical	class	listing.	
•  Package	hierarchy	in	a	tree	format.	
	

5:	C#	features	absent	in	
Java	

There	is	no	such	a	thing	as…	

Preprocessor	directives	

•  C#	has	proprocessor	directives	(similar	to	
those	of	C	and	C++)	

	
Although	the	compiler	doesn't	have	a	separate	
preprocessor,	the	directives	are	processed	as	if	
there	were	one.	They	are	used	to	help	in	
conditional	compilation.		
Unlike	C	and	C++	directives,	you	cannot	use	
these	directives	to	create	macros.	

Implicitly	typed	variables	

var	i	=	10;	//	implicitly	typed			
int	i	=	10;	//explicitly	typed		
	
Note:	in	Java	type	inference	is	only	done	with	
generics,	but	the	other	way	round:	
	LinkedList<String>	x=new	LinkedList<>();	

Properties	(C#	only)	
Java	 C#	

public	class	PropHolder	{	
				private	int	someProperty	=	0;	
				public	int	getSomeProperty(){	
									return	someProperty;	}	
					public	void	setSomeProperty(int	x)	{		
									someProperty	=	x;	}	
}	
	
public	class	PropertyTester	{	
			public	static	void	main(String[]	args)		{	
						PropHolder	propHold	=	new	PropHolder();	
								propHold.setSomeProperty	(5);	
								System.out.println("Property	Value:	",			
																propHold.getSomeProperty);	
				}	
}	

public	class	PropHolder	{	
				private	int	someProperty	=	0;	
				public	int	SomeProperty	
				{	
							get	{	return	someProperty;	}	
							set	{someProperty	=	value;	}	
				}	
}	
public	class	PropertyTester	{	
			public	static	void	Main(string[]	args)		{	
						PropHolder	propHold	=	new	PropHolder();	
						propHold.SomeProperty	=	5;	
								Console.WriteLine("Property	Value:	{0}",		
															propHold.SomeProperty);	
				}	
}	

You	can	ask	the	IDE	to	create	getters	and	setters	for	you	

Properties	(C#	only)	

To	the	client,	a	property	looks	like	a	member	variable,		
but	to	the	implementor	of	the	class	it	looks	like	a	
method.		
	
It	allows	you	total	encapsulation	and	data	hiding		
while	giving	your	clients	easy	access	to	the	members.	
	
The	value	is	implicitly	available	to	the	property.	
	
You	can	have	readonly	and	writeonly	properties.	
	

Verbatim	strings	

Also,	some	difference	in	escape	sequences:	

Java	 C#	

String	path	=	"C:\\My	Documents\\";	
//There	is	no	verbatim	string	in	Java	

string	path	=	"C:\\My	Documents\\";	
//can	be	written	with	verbatim	string	like:	
string	path	=	@"C:\My	Documents\";	

Out	parameters	(pass	by	reference)	
C#	only:	the	out	keyword,	which	indicates	that	you	may	pass	in	uninitialized	variables	and	they	
will	be	passed	by	reference.		
	
The	calling	method	should	mark	out	keyword.	
	
class	Test	{	
				static	void	Divide(int	a,	int	b,	out	int	result,	out	int	remainder)	{	
								result	=	a	/	b;	
								remainder	=	a	%	b;	
				}	
				static	void	Main()	{	
								for	(int	i	=	1;	i	<	10;	i++)	
												for	(int	j	=	1;	j	<	10;	j++)	{	
																int	ans,	r;	
																Divide(i,	j,	out	ans,	out	r);	
																Console.WriteLine("{0}	/	{1}	=	{2}r{3}",	i,	j,	ans,	r);	
												}	
				}	
}	

Struct	
struct	Point	{	
				public	int	x,	y;	
				public	Point(int	x,	int	y)	{	
								this.x	=	x;	
								this.y	=	y;	
				}	
}	
	
Point	a	=	new	Point(10,	10);	
Point	b	=	a;	
a.x	=	100;	
System.Console.WriteLine(b.x);	
	

A	struct	is	a	user-defined	value	type.		
	
Structs	in	C#	are	used	similarly	to	classes,		
except	that	it	can't	inherit	from	any	class,		
nor	can	any	class	inherit	from	it	(they	are	
“sealed”	and	the	implicit	base	class	is		
System.ValueType,	which	is	derived		
from	Object.		
	
They	can	contain	constructors,	constants,	
methods	and	more.		
	
struct	is	not	a	reference	type!	
	

Aliases	
The	using	keyword	can	be	used	to	alias	the	fully	qualified	name	for	a	
type	similar	to	the	way	typedef	is	used	in	C	and	C++.		
This	is	useful	in	creating	readable	code	where	the	fully	qualified	name	
of	a	class	is	needed	to	resolve	namespace	conflicts.	
	
using	Terminal	=	System.Console;		
	
class	Test{	
					public	static	void	Main(string[]	args){	
							//	Terminal.WriteLine	is	equivalent	to	System.Console.Writeline	
							Terminal.WriteLine(”hello");		
					}	
}	

Static	classes	

A	static	class	is	a	class	that	has	no	instance	
members,	no	instance	constructors	and	cannot	
be	used	as	a	base	class.	(e.g.	System.Math	class)	
	

Overflow	detection	
C#	provides	the	option	to	explicitly	detect	or	ignore	overflow	
conditions	in	expressions	and	type	conversions.	
	
/* overflow detected only if /checked compiler option on */	
			byte a = (byte) num;
	
			checked{
 byte b = (byte) num; /* overflow ALWAYS detected */
 }
 	
 unchecked{
 byte c = (byte) num; /* overflow NEVER detected */
 }	

Pointers	and	unsafe	code	
It	is	possible	to	have	in	C++	and	C-like	pointer	types	within	an	
“unsafe	context”	(a	lot	of	runtime	checking	is	then	disabled).	
	
public static unsafe void Sort(int* array, int size){
 for(int i= 0; i <	size - 1; i++)
 for(int j = i + 1; j <<size; j++)	
 if(array[i] > array[j])	
 Swap(&array[i], &array[j]);
 }	
	

Since	garbage	collection	may	relocate	managed	variables	
during	the	execution	of	a	program,	the	fixed	keyword	is	
provided	so	that	the	address	of	a	managed	variable	is	pinned	
during	the	execution	of	the	parts	of	the	program	within	the	
fixed	block.		

Deterministic	Object	Cleanup	
By	implementing	the	interface	iDispose	you	can	
expose	a	method	(Dispose)	to	actually	delete	an	
object	without	waiting	for	the	Garbage	Collector	to	
come.	
Also,	you	can	tell	the	GC	to	keep	clear	from	this	
object:	
GC.SuppressFinalize(this);	
	
See	
https://stackoverflow.com/questions/538060/
proper-use-of-the-idisposable-interface	
	

Explicit	interface	
A	class	may	implement	in	different	way	a	method	belonging	to	
different	interfaces.	The	implementing	method	must	be	private,	
and	can	only	be	called	by	casting	on	the	interface.	
	

public	class	SampleClass	:	IControl,	Isurface	{	
				void	IControl.Paint()	{	
								System.Console.WriteLine("IControl.Paint");	
				}	
				void	ISurface.Paint()	{	
								System.Console.WriteLine("ISurface.Paint");	
				}	
}	

//	Call	the	Paint	methods	from	Main.	
SampleClass	obj	=	new	SampleClass();	
//obj.Paint();		//	Compiler	error.	
IControl	c	=	(IControl)obj;	
//	Calls	IControl.Paint	on	SampleClass.	
c.Paint();		
ISurface	s	=	(ISurface)obj;	
//	Calls	ISurface.Paint	on	SampleClass.	
s.Paint();		

Output:	
IControl.Paint	
ISurface.Paint	

Operator	overloading	

Java	does	not	include	operator	overloading,	
because	abuse	of	operator	overloading	can	lead	
to	code	that	is	harder	to	understand	and	debug.	
(but	the	language	defines	the	+	operator	for	
Strings)	
	
C#	allows	operator	overloading,	which,	when	
used	carefully,	can	make	code	terser	and	more	
readable.	

Example:	+	overloading	

public	static	Box	operator+	(Box	b,	Box	c)	{	
			Box	box	=	new	Box();	
			box.length	=	b.length	+	c.length;	
			box.width	=	b.width	+	c.width	;	
			return	box;	
}	

Some	operators	cannot	be	overloaded:	
	
The	conditional	logical	operators:	&&,	||	
The	assignment	operators:	=,+=,	-=,	*=,	/=,	%=	
	.,	?:,	->,	new,	is,	sizeof,	typeof	

Example:	==	overloading	
public	class	Score	:	Icomparable	{	
				int	value;	
				public	Score	(int	score)	{	
								value	=	score;	
				}	
				public	static	bool	operator	==	(Score	x,	Score	y)	{	
								return	x.value	==	y.value;	
				}	
				public	static	bool	operator	!=	(Score	x,	Score	y)	{	
								return	x.value	!=	y.value;	
				}	
				public	int	CompareTo	(object	o)	{	
								return	value	-	((Score)o).value;	
				}	
}	
	
Score	a	=	new	Score	(5);	
Score	b	=	new	Score	(5);	
Object	c	=	a;	
System.Console.WriteLine	(((IComparable)c).CompareTo	(a));				//0	
System.Console.WriteLine	((object)a	==	(object)b;																								//	false	
System.Console.WriteLine	(a	==	b);																																																			//	true	

Some	operators	must	be	redefined	in	pairs:	
	
!=	and	==	
	
	>	and	<	
	
	>=	and	<=	

Indexer	([]	overloading)	
Indexers	allow	instances	of	a	class	or	struct	to	be	indexed	just	like	arrays.	The	
indexed	value	can	be	set	or	retrieved	without	explicitly	specifying	a	type	or	
instance	member.	Useful	e.g.	to	define	array-like	stuctures	with	non-numeric	
indexes.	

class	DayCollection	{	
				string[]	days	=	{	"Sun",	"Mon",	"Tues",	"Wed",	"Thurs",	"Fri",	"Sat"	};	
				private	int	GetDay(string	testDay)	{	
								for	(int	j	=	0;	j	<	days.Length;	j++)	{	
												if	(days[j]	==	testDay)	{	return	j;	}	
								}	
								throw	new	System.ArgumentOutOfRangeException(
																	testDay,		
																	”unecognized	string");	
				}	
				public	int	this[string	day]	{	
								get	{	return	(GetDay(day));	}	
				}	
}	

var	week	=	new	DayCollection();	
System.Console.WriteLine(week["Fri"]);	

(example	from	docs.microsoft.com)	

Delegates	
Delegates	are	a	mechanism	for	providing	callback	functions	(similar	to	
function	pointers	in	C	or	functors	in	C++).	
	
//	delegate	declaration,	similar	to	a	function	pointer	declaration	
				public	delegate	void	CallbackFunction(Dog	d);			
	
//function	compatible	with	delegate	declaration					
				public	static	void	Bark(Dog	d){	

	Console.WriteLine(“{0}	says	WOOF”,d);	
	}	
				
	//create	delegate	using	delegate	inference		
			CallbackFunction	myCallback	=	Bark;	
			myCallback(fido);	//invoke	it	
	

Anonymous	methods	

Go	hand	in	hand	with	delegates:	
	
CallbackFunction	cf=delegate(Dog	d)	{	
					Console.WriteLine(“{0}	says	WOOF”,d);	
}	
cf(fido);	
	

Lambda	expressions	(also	in	Java)	
delegate	void	X();	
X	instanceOfX;	
instanceOfX	=	delegate()	{	code	};	
	
instanceOfX	=	()	=>	{	code	};	//	alternative,	using	lambda	expression	
	
Lambda	expressions	are	also	available	in	Java	
()	->	{	code	};		
	
	
	
See	also	
https://blogs.msdn.microsoft.com/ericlippert/2007/01/10/lambda-
expressions-vs-anonymous-methods-part-one/	
	

6:	And	the,	of	course,	the	
API…	

This	is	big!	

APIs	(Java)	

Java	APIs	

Java		
Programming	
Language	

Java		
Virtual	Machine	

Java		
Commerce™	

JavaBeans	

Java		
Security™	

Java		
Management	

Java		
Media	

Java	Server™	

Java		
Enterprise	

e.g.:	collections	
Java	 C#	

The	Java	collections	framework	consists	of	a	
large	number	of	the	classes	and	interfaces	in	
the	java.util	package.	Its	classes	have	been	
retrofitted	to	support	generics.	
	
The	Java	collections	framework	has	a	number	
of	algorithms	for	manipulating	the	elements	
within	its	collections,	such	as:	
performs	sorts	and	binary	searches	-	find	the	
largest/smallest	element	based	on	some	
Comparator,		
find	sublists	within	a	list,		
reverse	the	contents	of	a	list,		
shuffle	the	contents	of	a	list,	
create	immutable	versions	of	a	collection.	

The	Systems.Collections	namespace	contains:	
•  	interfaces	and	abstract	classes	that	

represent	abstract	data	types	such	as	IList,	
IEnumerable,	IDictionary,	ICollection,	and	
CollectionBase		

•  concrete	implementations	of	data	
structures	such	as	ArrayList,	Stack,	Queue,	
HashTable	and	SortedList.	

The	System.Collections.Generic	namespace	
contains	generic	implementations	of	the	
above.	

