
Il	libro	
	

HTML?	
CSS?	
JS?	

Collections	

Dick	Baldwin	says…	
I	don't	know	of	any	employer	who	wants	their	programmers	
to	spend	time	and	dollars	reinventing	the	classical	data	
structures.	What	those	employers	are	looking	for	is	a	staff	of	
programmers	who	understand	the	tradeoffs	among	the	data	
structures,	and	when	it	is	appropriate	to	use	each	of	the	
different	structures.	
	
It	is	time	to	reinvent	the	curriculum	in	CS2	courses	by	
•  Encouraging	the	understanding	of	techniques	for	software	

reuse.	
•  Teaching	when,	why,	and	how	each	of	the	different	

structures	should	be	used.	
•  Discouraging	the	reinvention	of	those	structures.	

Collection	
A	Collection	represents	a	group	of	objects	known	as	its	elements	
	
Basic	operations:	int	size(),	boolean	isEmpty(),	boolean	contains(Object	
element),	boolean	add(E	element),	boolean	remove(Object	element),	and	
Iterator<E>	iterator().	
	
Methods	that	operate	on	entire	collections:	containsAll(Collection<?>	c),	
boolean	addAll(Collection<?	extends	E>	c),	boolean	removeAll(Collection<?>	
c),	boolean	retainAll(Collection<?>	c),	and	void	clear().	
	
Array	operations	(such	as	Object[]	toArray()	and	<T>	T[]	toArray(T[]	a)	
	
In	JDK	8	and	later,	the	Collection	interface	also	exposes	methods	Stream<E>	
stream()	and	Stream<E>	parallelStream(),	for	obtaining	sequential	or	parallel	
streams	from	the	underlying	collection.		

Converting	among	collections	
By	convention	all	general-purpose	collection	implementations	have	a	
constructor	that	takes	a	Collection	argument.	This	constructor,	known	
as	a	conversion	constructor,	initializes	the	new	collection	to	contain	all	
of	the	elements	in	the	specified	collection,	whatever	the	given	
collection's	subinterface	or	implementation	type.	In	other	words,	it	
allows	you	to	convert	the	collection's	type.	
	
Suppose,	for	example,	that	you	have	a	Collection<String>	c,	which	may	
be	a	List,	a	Set,	or	another	kind	of	Collection.	This	idiom	creates	a	new	
ArrayList	(an	implementation	of	the	List	interface),	initially	containing	
all	the	elements	in	c.	
	
List<String>	list	=	new	ArrayList<String>(c);	
JDK	7	or	later:	
List<String>	list	=	new	ArrayList<>(c);	

Collections	utilities	
STATIC	methods	of	class	Collections	:	
	
•  disjoint(Collection	uno,	Collection	due)	
•  sort(List	..)	
•  shuffle(List	a)	
•  min	(Collection	uno,	…)	
•  max	(Collection	uno,	…)	
•  frequency(Collection	uno,	Object	o)	
•  binarySearch(List…)	

Collections:	interfaces	vs	
implementation	

Interfaces

Set a Collection that cannot contain duplicate elements. It
models the mathematical set abstraction.

SortedSet
Set that maintains its elements in ascending order, sorted

according to the elements' \ordering or according to a
Comparator

List an ordered Collection

Queue

Deque

Map HashMap

SortedMap

The	List	Interface	
A	List	is	an	ordered	Collection).		
Lists	may	contain	duplicate	elements.	
It	includes	operations	for	the	following:	
	
•  Positional	access	—	manipulates	elements	based	on	their	numerical	

position	in	the	list.	This	includes	methods	such	as	get,	set,	add,	addAll,	and	
remove.	

•  Search	—	searches	for	a	specified	object	in	the	list	and	returns	its	
numerical	position.	Search	methods	include	indexOf	and	lastIndexOf.	

•  Iteration	—	extends	Iterator	semantics	to	take	advantage	of	the	list's	
sequential	nature.	The	listIterator	methods	provide	this	behavior.	

•  Range-view	—	The	sublist	method	performs	arbitrary	range	operations	on	
the	list.	

The	Set	

A	Set	is	a	Collection	that	cannot	contain	
duplicate	elements.	It	models	the	mathematical	
set	abstraction.		
	
	
	

The	Set/SortedSetInterface	
A	Set	tha	maintains	its	elements	in	ascending	order,	sorted	according	to	the	
elements'	natural	ordering	or	according	to	a	Comparator	provided	at	
SortedSet	creation	time.	
	
In	addition	to	the	normal	Set	operations,	the	SortedSet	interface	provides	
operations	for	the	following:	
	
•  Range	view	—	allows	arbitrary	range	operations	on	the	sorted	set	
•  Endpoints	—	returns	the	first	or	last	element	in	the	sorted	set	
•  Comparator	access	—	returns	the	Comparator,	if	any,	used	to	sort	the	set	
	

public	interface	SortedSet<E>	extends	Set<E>	{	
				//	Range-view	
				SortedSet<E>	subSet(E	fromElement,	E	toElement);	
				SortedSet<E>	headSet(E	toElement);	
				SortedSet<E>	tailSet(E	fromElement);	
			

	//	Endpoints	
				E	first();	
				E	last();	
				//	Comparator	access	
				Comparator<?	super	E>	comparator();	
}	

Queue	interface	
A	Queue	is	a	collection	for	holding	elements	in	order	of	
arrival.	Besides	basic	Collection	operations,	queues	provide	
additional	insertion,	removal,	and	inspection	operations.	The	
Queue	interface	follows.	
	
public	interface	Queue<E>	extends	Collection<E>	{	
				E	element();	
				boolean	offer(E	e);	
				E	peek();	
				E	poll();	
				E	remove();	
}	

Deque	interface	

	A	double-ended-queue	is	a	linear	collection	of	
elements	that	supports	the	insertion	and	
removal	of	elements	at	both	end	points.		
	

Type of Operation
First Element (Beginning

of the Deque instance)
Last Element (End of

the Deque instance)

Insert
addFirst(e) addLast(e)
offerFirst(e) offerLast(e)

Remove
removeFirst() removeLast()
pollFirst() pollLast()

Examine
getFirst() getLast()
peekFirst() peekLast()

Map	interface	
A	Map	is	an	object	that	maps	keys	to	values.		
A	map	cannot	contain	duplicate	keys:	Each	key	can	
map	to	at	most	one	value.		
It	models	the	mathematical	function	abstraction.		
	
The	Map	interface	includes	methods	for		
•  basic	operations	(e.g.	put,	get,	remove,	
containsKey,	containsValue,	size,	and	empty),	

•  	bulk	operations	(e.g.	putAll	and	clear),		
•  	collection	views	(e.g.	keySet,	values).	

SortedMap	interface	

A	SortedMap	is	a	Map	that	maintains	its	entries	
in	ascending	order,	sorted	according	to	the	keys'	
natural	ordering,	or	according	to	a	Comparator	
provided	at	the	time	of	the	SortedMap	creation.	
	
	

Collections:	interfaces	vs	
implementation	

Interfaces Hash table
Implementations

Resizable array
Implem.

Tree
Implem.

Linked list
Implem.

Hash table + Linked
list Implem.

Set HashSet TreeSet LinkedHashSet

List ArrayList LinkedList

Queue ArrayDeque LinkedList

Deque ArrayDeque LinkedList

Map HashMap TreeMap LinkedHashMap

Set/SortedSet	implementations	
	HashSet	is	much	faster	than	TreeSet	(constant-time	versus	log-
time	for	most	operations)	but	offers	no	ordering	guarantees.		
	
If	you	need	to	use	the	operations	in	the	SortedSet	interface,	or	if	
value-ordered	iteration	is	required,	use	TreeSet;	otherwise,	use	
HashSet.	
You'll	end	up	using	HashSet	most	of	the	time.	
	
LinkedHashSet	is	in	“intermediate”	between	HashSet	and	
TreeSet.	Implemented	as	a	hash	table	with	a	linked	list	running	
through	it,	it	provides	insertion-ordered	iteration	(least	recently	
inserted	to	most	recently)	and	runs	nearly	as	fast	as	HashSet.		

List	implementations	
There	are	two	general-purpose	List	implementations	—	
ArrayList	and	LinkedList.		
Positional	access	requires	linear-time	in	a	LinkedList	and	
constant-time	in	an	ArrayList.		
	
If	you	frequently	add	elements	to	the	beginning	of	the	List	or	
iterate	over	the	List	to	delete	elements	from	its	interior,	you	
should	consider	using	LinkedList.		
These	operations	require	constant-time	in	a	LinkedList	and	
linear-time	in	an	ArrayList.		
	
Most	of	the	time,	you'll	probably	use	ArrayList.	
	

Map	implementations	
HashMap,	TreeMap	,LinkedHashMap.		
	
If	you	need	SortedMap	operations	or	key-ordered	
Collection-view	iteration,	use	TreeMap.	
	
Iif	you	want	maximum	speed	and	don't	care	about	
iteration	order,	use	HashMap.	
	
	if	you	want	near-HashMap	performance	and	insertion-
order	iteration,	use	LinkedHashMap.	In	this	respect,	
the	situation	for	Map	is	analogous	to	Set.	

Queue	– Dequeue	implementations	
	

LinkedList,	plus	many	others.		
	

Suggerimento	

•  Non	scrivere	MAI	la	business	logic	nel	main!	

An	example	
import	java.util.TreeSet;	
import	java.util.Collection;	
import	java.util.Iterator;	
public	class	AP400{	
		public	static	void	main(
																								String	args[]){	
				new	Worker().doIt();	
		}}	

class	Worker{	
		public	void	doIt(){	
				Collection	ref	=	new	TreeSet();	
				Populator.fillIt(ref);	
				Iterator	iter	=	ref.iterator();	
				while(iter.hasNext()){	
						System.out.print(iter.next());	
				}		
				System.out.println();	
		}}	

An	example	–	part	2	
class	Populator{	
		public	static	void	fillIt(Collection	ref){	
				ref.add(new	Integer(4));	
				ref.add(new	Integer(4));	
				ref.add(new	Integer(3));	
				ref.add(new	Integer(2));	
				ref.add(new	Integer(1));	
		}}	

Vedi	anche	
https://cnx.org/contents/dzOvxPFw@10.2:BaPSYll8@6/Java4010-Getting-Started-with-	
	
		
	

Synchronization	
The	synchronization	wrappers	add	automatic	synchronization	
(thread-safety)	to	an	arbitrary	collection.	
	Each	of	the	core	collection	interfaces	has	one	static	factory	
method.	
	
public	static	<T>	Collection<T>	synchronizedCollection(Collection<T>	c);	
public	static	<T>	Set<T>	synchronizedSet(Set<T>	s);	
public	static	<T>	List<T>	synchronizedList(List<T>	list);	
public	static	<K,V>	Map<K,V>	synchronizedMap(Map<K,V>	m);	
public	static	<T>	SortedSet<T>	synchronizedSortedSet(SortedSet<T>	s);	
public	static	<K,V>	SortedMap<K,V>	synchronizedSortedMap(SortedMap<K,V>	m);	

Synchronization	wrappers	
Collection<Type>	myCollection=new	LinkedList<>;		
Collection<Type>	c	=	Collections.synchronizedCollection(myCollection);	
synchronized(c)	{	
				for	(Type	e	:	c)	
								foo(e);	
}	

Collections	and	Streams	

See	
	
https://docs.oracle.com/javase/tutorial/
collections/streams/index.html	
	

I/O	

Typical	Java	I/O…	
 Scanner s = null;

 try {
 s = new Scanner(

	 	 	new BufferedReader(
	 	 	 	new FileReader("xanadu.txt”)));

 while (s.hasNext()) {
 System.out.println(s.next());
 }
 } finally {
 if (s != null) {
 s.close();
 }
 }	

By	default,	a	scanner	
uses	white	space	to	
separate	tokens.	
	
	White	space	characters	
include	blanks,	tabs,	
and	line	terminators.		

https://docs.oracle.com/javase/tutorial/essential/io/scanning.html	
	

I/O	Table	
 Byte Based Character Based

 Input Output Input Output

Basic InputStream OutputStream
Reader Writer

InputStreamReader OutputStreamWriter

Arrays ByteArrayInputStream ByteArrayOutputStream CharArrayReader CharArrayWriter

Files
FileInputStream FileOutputStream

FileReader FileWriter
RandomAccessFile RandomAccessFile

Pipes PipedInputStream PipedOutputStream PipedReader PipedWriter

Buffering BufferedInputStream BufferedOutputStream BufferedReader BufferedWriter

Filtering FilterInputStream FilterOutputStream FilterReader FilterWriter

Parsing
PushbackInputStream PushbackReader

StreamTokenizer LineNumberReader

Strings StringReader StringWriter

Data DataInputStream DataOutputStream

Data -
Formatted PrintStream PrintWriter

Objects ObjectInputStream ObjectOutputStream

Utilities SequenceInputStream

Reading	from	file	
Path	file	=	...;	
try	(InputStream	in	=	Files.newInputStream(file);	
				BufferedReader	reader	=	
						new	BufferedReader(new	InputStreamReader(in)))	{	
				String	line	=	null;	
				while	((line	=	reader.readLine())	!=	null)	{	
								System.out.println(line);	
				}	
}	catch	(IOException	x)	{	
				System.err.println(x);	
}	

To	open	a	file	for	reading,	you	
can	use	the	
newInputStream(Path,	
OpenOption...)	method.	This	
method	returns	an	unbuffered	
input	stream	for	reading	bytes	
from	the	file	

Writing	to	file	
import	static	java.nio.file.StandardOpenOption.*;	
import	java.nio.file.*;	
import	java.io.*;	
public	class	LogFileTest	{	
		public	static	void	main(String[]	args)	{	
				//	Convert	the	string	to	a	byte	array.	
				String	s	=	"Hello	World!	";	
				byte	data[]	=	s.getBytes();	
				Path	p	=	Paths.get("./logfile.txt");	
				try	(OutputStream	out	=	new	BufferedOutputStream(
						Files.newOutputStream(p,	CREATE,	APPEND)))	{	
						out.write(data,	0,	data.length);	
				}	catch	(IOException	x)	{	
						System.err.println(x);	
	}	}}	

The	newOutputStream	
method	opens	or	creates	a	
file	for	writing	bytes	and	
returns	an	unbuffered	
output	stream.	

java.nio.file:	file	properties		

Path	file	=	...;	
boolean	isRegularExecutableFile	=	
Files.isRegularFile(file)	&	
	Files.isReadable(file)	&	 	 	
	Files.isExecutable(file);	

Formatting	
public	class	Root2	{	
				public	static	void	main(String[]	args)	{	
								int	i	=	2;	
								double	r	=	Math.sqrt(i);			
								System.out.format("The	square	root	of	%d	is	%f.%n",	i,	r);	
				}	
}	
	
The	square	root	of	2	is	1.414214.	

public	class	Format	{	
				public	static	void	main(String[]	args)	{	
								System.out.format("%f,	%1$+020.10f	%n",	Math.PI);	
				}	
}	
	
3.141593,	+00000003.1415926536	

Path	
You	can	easily	create	a	Path	object	by	using	one	of	the	
following	get	methods	from	the	Paths	(note	the	plural)	helper	
class:	
	
Path	p1	=	Paths.get("/tmp/foo");	
Path	p2	=	Paths.get(args[0]);	
Path	p3	=	Paths.get(URI.create("file:///Users/joe/
FileTest.java"));	
	
This	creates	/u/joe/logs/foo.log	assuming	your	home	directory	
is	/u/joe,	or	C:\joe\logs\foo.log	if	you	are	on	Windows.	
	
Path	p5	=	Paths.get(System.getProperty("user.home"),"logs",	
"foo.log");	

Watching	a	directory	for	change	

https://docs.oracle.com/javase/tutorial/
essential/io/notification.html	
	

See	tutorial	

•  https://docs.oracle.com/javase/tutorial/
essential/io/index.html	

Database	

JDBC	Tutorial	

https://docs.oracle.com/javase/tutorial/jdbc/
overview/index.html	
	
https://docs.oracle.com/javase/tutorial/jdbc/
basics/index.html	
	
	

Concurrency	

Concurrency	

https://docs.oracle.com/javase/tutorial/
essential/concurrency/index.html	
	

IDE	for	Java	

According	to	JavaWorld…	
Three	IDEs	are	the	major	ones:	
•  IntellijIDEA	
•  Eclipse	
•  Netbeans	
	

https://www.javaworld.com/article/
3114167/development-tools/choosing-your-
java-ide.html	
	

I	tend	to	recommend	that	new	Java	coders	not	use	
Eclipse.	Even	though	it's	the	most	popular	Java	IDE,	it	has	
the	steepest	learning	curve	and	the	most	potential	for	
confusion,	both	in	daily	use	and	when	maintaining	the	
IDE.	

For	new	Java	coders	without	a	budget	for	tools,	
the	choice	is	between	NetBeans	and	IntelliJ	IDEA	
Community	Edition.	If	you're	coding	Java	servers	
with	little	or	no	budget	for	tools,	then	NetBeans	
might	be	the	better	choice	

BlueJ	
Vantaggi:	Integrazione	con	UML!	

Svantaggio	principale:	manca	la	autocompletion	

BlueJ	
Vantaggi:	visualizzazione	immediata	della	documentazione	generata	

Svantaggi:	no	versioning,	no	refactoring,	no	integrated	servers… 	

Netbeans	basics	

Hands	on:	
1)  Create	project	
2)  Code	completion	
3)  Run	project	–	run	file	
4)  Rebuild	
	

Netbeans	important	elements	

	
1)  MaximizeWindow	–	Reset	Windows	
2)  Project	properties	
3)  Configuration	

Netbeans	–	interesting	features	
	
1)  Source	format	
2)  Refactor	
3)  Code	inspection	
4)  Navigate	
5)  Find	usages	
6)  Insert	code	
7)  debug	

