
1

Introduction to OWL

Marco Ronchetti

Università di Trento

Italy

Languages

Work on Semantic Web has concentrated on the
definition of a collection or “stack” of languages.
! These languages are then used to support the representation

and use of metadata.

Basic machinery to represent the extra semantic
information needed for the Semantic Web
! XML

! RDF

! RDF(S)

! OWL

! …

OWL

In
te

g
ra

tio
n

RDF(S)

RDF

XML

A
n
n
o
ta

tio
n

In
te

g
ra

tio
n

In
fe

re
n
c
e

2

Joint EU/US Committee

DAML

OntoKnowledge+Others

OWL: Web Ontology Language

Frames

Description

Logics

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL
W3C

20042001

1999

EU

USA

A Printer Ontology – HP Products

<owl:Class rdf:ID="hpProduct">

<owl:intersectionOf>

<owl:Class rdf:about="#product"/>

<owl:Restriction>

 <owl:onProperty rdf:resource="#manufactured-by"/>

 <owl:hasValue>

<xsd:string rdf:value="Hewlett Packard"/>

 </owl:hasValue>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

3

Key Words

Ontology

Class

Restriction

Property

Ontology

A heavily overloaded term

with several different meanings

in different disciplines:

! Philosophy

! Linguistics

! Computer Science)

4

Ontology - Philosophy

Ontology deals with the nature and organisation

of reality (Aristotele)

Tries to answer the questions:

What characterizes being?

What is being?

Ontology - Linguistics

a concept, is the mediator that relates the

symbol to its object

Concept of

TANKactivates

Referent

Relates to

Stands for

"Semiotic triangle"

Symbol

"Tank"

5

Ontology - Computer Science

Rudi Studer(98)

A Semantic continuum

Further to the right:

! Less ambiguity

! Better inter-operation

! More robust

! More difficult

6

Structure of an Ontology

Ontologies typically have two distinct components:

Names for important concepts in the domain
! Elephant is a concept whose members are a kind of animal

! Herbivore is a concept whose members are exactly those
animals who eat only plants or parts of plants

! Carnivore is a concept whose members are exactly those
animals who eat other animals

! Adult_Elephant is a concept whose members are exactly
those elephants whose age is greater than 20 years

Background knowledge/constraints on the domain
! Adult_Elephants weight at least 2,000 kg

! All Elephants are either African_Elephants or
Indian_Elephants

! No individual can be both a Herbivore and a Carnivore

Ontology Languages

There are a wide variety of languages for

“Explicit Specification”

! Graphical Notations

! Semantic Networks

! Topic Maps

! UML

! RDF

7

Ontology Languages

There are a wide variety of languages for

“Explicit Specification”
! Graphical Notations

! Semantic Networks

! Topic Maps

! UML

! RDF

! Logic Based
! Description Logics

! Rules

! First Order Logic

! Conceptual Graphs

Requirements for Ontology

Languages

Ontology languages allow users to write explicit,
formal conceptualizations of domain models

The main requirements are:
!a well-defined syntax

!efficient reasoning support

!a formal semantics

! sufficient expressive power

! convenience of expression

8

Tradeoff between Expressive Power

and Efficient Reasoning Support

The richer the language is, the more inefficient
the reasoning support becomes

Sometimes it crosses the border of
noncomputability

We need a compromise:
!A language supported by reasonably efficient

reasoners

!A language that can express large classes of
ontologies and knowledge.

Reasoning About Knowledge in

Ontology Languages

Class membership

! If x is an instance of a class C, and C is a
subclass of D, then we can infer that x is an
instance of D

Equivalence of classes

! If class A is equivalent to class B, and class
B is equivalent to class C, then A is
equivalent to C, too

9

Reasoning About Knowledge in

Ontology Languages (2)

Consistency
!X instance of classes A and B, but A and B are

disjoint

!This is an indication of an error in the ontology

Classification
!Certain property-value pairs are a sufficient

condition for membership in a class A; if an
individual x satisfies such conditions, we can
conclude that x must be an instance of A

Uses for Reasoning

Reasoning support is important for

! checking the consistency of the ontology and the knowledge

! checking for unintended relationships between classes

! automatically classifying instances in classes

Checks like the preceding ones are valuable for
! designing large ontologies, where multiple authors are

involved

! integrating and sharing ontologies from various sources

10

Reasoning Support for OWL

Semantics is a prerequisite for reasoning support

Formal semantics and reasoning support are usually
provided by
! mapping an ontology language to a known logical formalism

! using automated reasoners that already exist for those
formalisms

OWL is (partially) mapped on a description logic, and
makes use of reasoners such as Pellet and RACER

Description logics are a subset of predicate logic for
which efficient reasoning support is possible

Aside: Description Logics

A family of logic based Knowledge
Representation formalisms
!Descendants of semantic networks and KL-ONE

!Describe domain in terms of concepts (classes),
roles (relationships) and individuals

Distinguished by:
!Formal semantics (typically model theoretic)

!Decidable fragments of FOL

!Provision of inference services
!Sound and complete decision procedures for key problems

! Implemented systems (highly optimised)

11

DL Semantics

Model theoretic semantics. An interpretation consists of
! A domain of discourse (a collection of objects)

! Functions mapping

! classes to sets of objects

! properties to sets of pairs of objects

! Rules describe how to interpret the constructors and tell us
when an interpretation is a model.

In a DL, a class description is thus a characterisation of the
individuals that are members of that class.

Was!nt RDF(S) enough?

OWL

In
te

g
ra

tio
n

RDF(S)

RDF

XML

A
n
n
o
ta

tio
n

In
te

g
ra

tio
n

In
fe

re
n
c
e

12

RDF(S) Inference

Lecturer

Academic

Person

rdfs:subClassOf

rdf:subClassOf

rdfs:subClassOf

rdf:type

rdfs:Class
rdf:type

rdf:type

RDF(S) Inference

Sean

Lecturer

rdf:type

rdfs:Class

Academic

rdfs:subClassOf

rdf:type

rdf:type

rdfs:type

13

Limitations of the Expressive Power

of RDF Schema

Local scope of properties

! rdfs:range defines the range of a property
(e.g. eats) for all classes

! In RDF Schema we cannot declare range
restrictions that apply to some classes only

! E.g. we cannot say that cows eat only
plants, while other animals may eat meat,
too

Limitations of the Expressive Power

of RDF Schema (2)

Disjointness of classes
!Sometimes we wish to say that classes are disjoint

(e.g. male and female)

Boolean combinations of classes
!Sometimes we wish to build new classes by

combining other classes using union, intersection,
and complement

!E.g. person is the disjoint union of the classes
male and female

14

Limitations of the Expressive Power

of RDF Schema (3)

Cardinality restrictions

! E.g. a person has exactly two parents, a course is

taught by at least one lecturer

Special characteristics of properties

! Transitive property (like “greater than”)

! Unique property (like “is mother of”)

! A property is the inverse of another property (like

“eats” and “is eaten by”)

Combining OWL with RDF

Schema

Ideally, OWL would extend RDF Schema

! Consistent with the layered architecture of the

Semantic Web

But simply extending RDF Schema would work

against obtaining expressive power and

efficient reasoning

! Combining RDF Schema with logic leads to

uncontrollable computational properties

15

Three Species of OWL

W3C!sWeb Ontology Working Group defined OWL as

three different sublanguages:

! OWL Full

! OWL DL

! OWL Lite

Each sublanguage geared toward

fulfilling different aspects of requirements

Full

DL

Lite

OWL Full – (FOP)

It uses all the OWL languages primitives

It allows the combination of these primitives in arbitrary

ways with RDF and RDF Schema

OWL Full is fully upward-compatible with RDF, both

syntactically and semantically

OWL Full is so powerful that it is undecidable

! No complete (or efficient) reasoning support

16

OWL DL

OWL DL (Description Logic) is a sublanguage of OWL
Full that restricts application of the constructs from
OWL and RDF
! Application of OWL!s constructs! to each other is disallowed

! Therefore it corresponds to a well studied description logic

OWL DL permits efficient reasoning support

But we lose full compatibility with RDF:
! Not every RDF document is a legal OWL DL document.

! Every legal OWL DL document is a legal RDF document.

OWL Lite

An even further restriction limits OWL DL to a
subset of the language constructs
!E.g., OWL Lite excludes enumerated classes,

disjointness statements, and arbitrary cardinality.

The advantage of this is a language that is
easier to
!grasp, for users

! implement, for tool builders

The disadvantage is restricted expressivity

practically not used

17

owl:Thing owl:Nothing

The class owl:Thing is the class that represents

the set containing all individuals. All classes

are subclasses of owl:Thing.

owl:Thing is part of the OWL Vocabulary, which

is defined by the ontology located at

http://www.w3.org/2002/07/ owl/¥#

owl:Nothing is the empty class

Disjoint classes

OWL Classes are assumed to "overlap".

 We cannot assume that an individual is not a member

of a particular class simply because it has not been

asserted to be a member of that class.

In order to "separate" a group of classes we

must make them disjoint from one another.

 This ensures that an individual which has been

asserted to be a member of one of the classes in the

group cannot be a member of any other classes in

that group

18

Subclasses

If TomatoTopping

is a subclass of VegetableTopping which

 is a subclass of PizzaTopping

then all individuals that

are members of the class TomatoTopping

are also members of the class VegetableTopping

and members of the class PizzaTopping

Multiple inheritance

If Car is subclass of ExpensiveItems

and Car is subclass of RoadVehicles

this does not imply a relation between

ExpensiveItems and RoadVehicles

19

Closed World Assumption

OWL currently adopts the open-world assumption:

! A statement cannot be assumed true on the basis of a failure to
prove it

! On the huge and only partially knowable WWW, this is a correct

assumption

Closed-world assumption: a statement is true when its negation

cannot be proved

! tied to the notion of defaults, leads to nonmonotonic behaviour

Unique Names Assumption

Typical database applications assume that

individuals with different names are indeed

different individuals

OWL follows the usual logical paradigm where

this is not the case

!Plausible on the WWW

One may want to indicate portions of the ontology

for which the assumption does or does not hold

20

Properties

OWL Properties represent relationships between

two individuals.

Object properties link an

individual to an individual.

Datatype properties link an

individual to an XML Schema

Datatype value or an rdf literal.

OWL has also Annotation properties

Properties

There is no strict naming convention for

properties, but it is suggested that property

names start with a lower case letter, have no

spaces and have the remaining words

capitalised.

It is also reccomended that properties are

prefixed with the word has or is

e.g. hasPart, isPartOf,

 hasManufacturer, isProducerOf.

21

Inverse Properties

Functional - Inverse Functional

If a property is functional (single valued property,

feature), for a given individual, there can be at

most one individual that is related to the

individual via the property.

(A p B), (A p C) ! B=C

If a property is inverse functional then it means

that the inverse property is functional.

22

Symmetric - Transitive

Symmetric (A p B) ! (B p A)

Transitive (A p B) , (B p C) ! (A p C)

if a property is transitive then it cannot be functional.

Properties: Domain and Range

Properties may have a domain and a range

specified. Properties link individuals from the

domain to individuals from the range.

It is important to realise that in OWL domains

and ranges should NOT be viewed as

constraints to be checked. They are used as

axioms in reasoning.

23

Properties: Domain and Range

For example if the property hasTopping has the

domain set as Pizza and we then applied the

hasTopping property to IceCream, this would

generally not result in an error.

It would be used to infer that the class IceCream

must be a subclass of Pizza!

An error will only be generated (by a reasoner) if

Pizza is disjoint to IceCream

.

Property restrictions

!Quantifier Restrictions (", #)

!Cardinality Restrictions (e.g. >3)

!hasValue Restrictions (e.g. oneOf …)

24

Existential Restriction

" Prop ClassA

(someValueFrom)

Every individual must have at least one prop releshionship with a
member of class A

(Necessary condition)

(Open World Assumption)

Existential restriction

" hasTopping Mozzarella

 describes the (anonymous) class of individuals

that have at least one topping that is

Mozzarella

25

Universal Restriction

Prop ClassA

(allVeluesFrom)

If relation for prop exists, it must be with an element of

ClassA

(but there might be elements that do not have prop!)

Combining Universal & Existential

Prop ClassA

" Prop ClassA

Every individual has prop with at least one element in

class A, and no individual has prop with elements not

belonging to class A

Necessary and sufficient condition

Definition

26

Closure Axiom

Prop (ClassA $ ClassB)

" Prop ClassA

" Prop ClassB

Every individual has prop with at least one element in

either class A or Class B, and with no other classes.

Tools

Editors
! Protégé OWL, SWOOP, ICOM, TopQuadrant Composer,

OntoTrack, NeOn…

! Offer the possibility of using reasoners.

Reasoners
! DL style reasoners based on tableaux algorithms

! Racer, FaCT++, Pellet

! Based on rules or F-logic
! F-OWL, E-Wallet…..

APIs and Frameworks
! Jena, WonderWeb OWL-API, Protégé OWL API, OWLIM

27

Protégé

! Is a knowledge modelling environment

! Is free, open source software

! Is developed by Stanford Medical Informatics

! Has a large user community

! Supports development of plugins to allow

backend / interface extensions (e.g.

reasoners)

! supports OWL

Conclusions: now you should know…

Why are we using ontologies and reasoners?

What is a class/property/individual ?

What is the open world assumption? What are its

consequences?

What is the (not) unique name assumption? What are

the consequences?

What is a universal restriction? And an existential

restriction?

What other property restrictions are there?

What is a functional property?

Why do we have 3 different OWLs?

28

Credits

these slides are a compliation form the following

sources (thanks!):

A Practical Introduction to Ontologies & OWL

by Duncan Hall & Nick Drummonds

A Semantic Web Primer

by Grigoris Antoniou & Frank van Harmelen

Ontology Languages for the Semantic Web

by Sean Bechhofer

A Practical Guide To Building OWL Ontologies Using

The Protege-OWL Plugin and CO-ODE Tools

by Matthew Horridge et al.

Appendix 1 : OWL Syntax

 (from Grigoris Antoniou

Frank van Harmelen)

29

OWL Syntactic Varieties

OWL builds on RDF and uses RDF!s XML-based

syntax

Other syntactic forms for OWL have also been

defined:
! An alternative, more readable XML-based syntax

! An abstract syntax, that is much more compact
and readable than the XML languages

! A graphic syntax based on the conventions of
UML

OWL XML/RDF Syntax: Header

<rdf:RDF
xmlns:owl ="http://www.w3.org/2002/07/owl#"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#"
xmlns:xsd ="http://www.w3.org/2001/
XLMSchema#">

An OWL ontology may start with a collection of
assertions for housekeeping purposes using
owl:Ontology element

30

owl:Ontology

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology
</rdfs:comment>

<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old"/>

<owl:imports

rdf:resource="http://www.mydomain.org/persons"/>

<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

owl:imports is a transitive property

Classes

Classes are defined using owl:Class
! owl:Class is a subclass of rdfs:Class

Disjointness is defined using owl:disjointWith

<owl:Class rdf:about="#associateProfessor">

<owl:disjointWith rdf:resource="#professor"/>

<owl:disjointWith
rdf:resource="#assistantProfessor"/>

</owl:Class>

31

Classes (2)

owl:equivalentClass defines equivalence of
classes

<owl:Class rdf:ID="faculty">
<owl:equivalentClass rdf:resource=
"#academicStaffMember"/>

</owl:Class>

owl:Thing is the most general class, which
contains everything

owl:Nothing is the empty class

Properties

In OWL there are two kinds of
properties
! Object properties, which relate objects

to other objects
! E.g. is-TaughtBy, supervises

! Data type properties, which relate
objects to datatype values
! E.g. phone, title, age, etc.

32

Datatype Properties

OWL makes use of XML Schema data types,

using the layered architecture of the SW

<owl:DatatypeProperty rdf:ID="age">

<rdfs:range rdf:resource=
"http://www.w3.org/2001/XLMSchema

#nonNegativeInteger"/>

</owl:DatatypeProperty>

Object Properties

User-defined data types

<owl:ObjectProperty rdf:ID="isTaughtBy">

<owl:domain rdf:resource="#course"/>

<owl:range rdf:resource=

"#academicStaffMember"/>

<rdfs:subPropertyOf rdf:resource="#involves"/>

</owl:ObjectProperty>

33

Inverse Properties

<owl:ObjectProperty rdf:ID="teaches">

<rdfs:range rdf:resource="#course"/>

<rdfs:domain rdf:resource=

"#academicStaffMember"/>

<owl:inverseOf

rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>

Equivalent Properties

owl:equivalentProperty

<owl:ObjectProperty rdf:ID="lecturesIn">

<owl:equivalentProperty

rdf:resource="#teaches"/>

</owl:ObjectProperty>

34

Property Restrictions

In OWL we can declare that the class C satisfies

certain conditions
! All instances of C satisfy the conditions

This is equivalent to saying that C is subclass of

a class C', where C' collects all objects that

satisfy the conditions
! C' can remain anonymous

Property Restrictions (2)

A (restriction) class is achieved through an
owl:Restriction element

This element contains an owl:onProperty
element and one or more restriction
declarations

One type defines cardinality restrictions (at
least one, at most 3,…)

35

Property Restrictions (3)

The other type defines restrictions on the kinds of

values the property may take

! owl:allValuesFrom specifies universal

quantification

! owl:hasValue specifies a specific value

! owl:someValuesFrom specifies existential

quantification

owl:allValuesFrom

<owl:Class rdf:about="#firstYearCourse">

<rdfs:subClassOf>

 <owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:allValuesFrom
 rdf:resource="#Professor"/>

 </owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

36

owl:hasValue

<owl:Class rdf:about="#mathCourse">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=

"#isTaughtBy"/>
<owl:hasValue rdf:resource=

"#949352"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

owl:someValuesFrom

<owl:Class rdf:about="#academicStaffMember">

<rdfs:subClassOf>

 <owl:Restriction>

<owl:onProperty rdf:resource="#teaches"/>

<owl:someValuesFrom rdf:resource=
"#undergraduateCourse"/>

 </owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

37

Cardinality Restrictions

We can specify minimum and maximum number

using owl:minCardinality and

owl:maxCardinality

It is possible to specify a precise number by

using the same minimum and maximum

number

For convenience, OWL offers also

owl:cardinality

Cardinality Restrictions (2)

<owl:Class rdf:about="#course">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:minCardinality rdf:datatype=
"&xsd;nonNegativeInteger">

1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

38

Special Properties

owl:TransitiveProperty (transitive property)
! E.g. “has better grade than”, “is ancestor of”

owl:SymmetricProperty (symmetry)
! E.g. “has same grade as”, “is sibling of”

owl:FunctionalProperty defines a property that has at
most one value for each object
! E.g. “age”, “height”, “directSupervisor”

owl:InverseFunctionalProperty defines a property for
which two different objects cannot have the same
value

Special Properties (2)

<owl:ObjectProperty rdf:ID="hasSameGradeAs">

<rdf:type
rdf:resource="&owl;TransitiveProperty"/>

<rdf:type
rdf:resource="&owl;SymmetricProperty"/>

<rdfs:domain rdf:resource="#student"/>

<rdfs:range rdf:resource="#student"/>

</owl:ObjectProperty>

39

Boolean Combinations

We can combine classes using Boolean operations
(union, intersection, complement)

<owl:Class rdf:about="#course">
<rdfs:subClassOf>

<owl:Restriction>
<owl:complementOf rdf:resource=

"#staffMember"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Boolean Combinations (2)

<owl:Class rdf:ID="peopleAtUni">
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>
<owl:Class rdf:about="#student"/>

</owl:unionOf>
</owl:Class>

The new class is not a subclass of the union, but rather
equal to the union
! We have stated an equivalence of classes

40

Boolean Combinations (3)

<owl:Class rdf:ID="facultyInCS">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#belongsTo"/>

<owl:hasValue rdf:resource=
"#CSDepartment"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

Nesting of Boolean Operators

<owl:Class rdf:ID="adminStaff">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>
<owl:complementOf>

<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#faculty"/>
<owl:Class rdf:about=

"#techSupportStaff"/>
</owl:unionOf>

</owl:complementOf>
</owl:intersectionOf>

</owl:Class>

41

Enumerations with owl:oneOf

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Monday"/>

<owl:Thing rdf:about="#Tuesday"/>

<owl:Thing rdf:about="#Wednesday"/>

<owl:Thing rdf:about="#Thursday"/>

<owl:Thing rdf:about="#Friday"/>

<owl:Thing rdf:about="#Saturday"/>

<owl:Thing rdf:about="#Sunday"/>

</owl:oneOf>

Declaring Instances

Instances of classes are declared as in RDF:

<rdf:Description rdf:ID="949352">

<rdf:type rdf:resource=
"#academicStaffMember"/>

</rdf:Description>

<academicStaffMember rdf:ID="949352">

<uni:age rdf:datatype="&xsd;integer">
39<uni:age>

</academicStaffMember>

42

No Unique-Names Assumption

OWL does not adopt the unique-names

assumption of database systems

! If two instances have a different name or ID does
not imply that they are different individuals

Suppose we state that each course is taught by

at most one staff member, and that a given

course is taught by two staff members

! An OWL reasoner does not flag an error

! Instead it infers that the two resources are equal

Distinct Objects

To ensure that different individuals are indeed

recognized as such, we must explicitly

assert their inequality:

<lecturer rdf:about="949318">

<owl:differentFrom rdf:resource="949352"/>

</lecturer>

43

Distinct Objects (2)

OWL provides a shorthand notation to assert the
pairwise inequality of all individuals in a given list

<owl:allDifferent>

<owl:distinctMembers rdf:parseType="Collection">

<lecturer rdf:about="949318"/>

<lecturer rdf:about="949352"/>

<lecturer rdf:about="949111"/>

</owl:distinctMembers>

</owl:allDifferent>

Data Types in OWL

XML Schema provides a mechanism to

construct user-defined data types

! E.g., the data type of adultAge includes all
integers greater than 18

Such derived data types cannot be used in OWL

! The OWL reference document lists all the XML
Schema data types that can be used

! These include the most frequently used types
such as string, integer, Boolean, time, and date.

44

Versioning Information

owl:priorVersion indicates earlier versions of

the current ontology
! No formal meaning, can be exploited for ontology

management

owl:versionInfo generally contains a string

giving information about the current version,

e.g. keywords

Versioning Information (2)

owl:backwardCompatibleWith contains a reference to

another ontology

! All identifiers from the previous version have the same
intended interpretations in the new version

! Thus documents can be safely changed to commit to the
new version

owl:incompatibleWith indicates that the containing

ontology is a later version of the referenced ontology

but is not backward compatible with it

45

Combination of Features

In different OWL languages there are

different sets of restrictions regarding

the application of features

In OWL Full, all the language constructors

may be used in any combination as

long as the result is legal RDF

Restriction of Features in OWL DL

Vocabulary partitioning
! Any resource is allowed to be only a class, a data

type, a data type property, an object property, an
individual, a data value, or part of the built-in
vocabulary, and not more than one of these

Explicit typing
! The partitioning of all resources must be stated

explicitly (e.g. a class must be declared if used in
conjunction with rdfs:subClassOf)

46

Restriction of Features in OWL DL (2)

Property Separation
! The set of object properties and data type

properties are disjoint

! Therefore the following can never be specified for
data type properties:

owl:inverseOf

owl:FunctionalProperty

owl:InverseFunctionalProperty

owl:SymmetricProperty

Restriction of Features in OWL DL (3)

No transitive cardinality restrictions
! No cardinality restrictions may be placed on

transitive properties

Restricted anonymous classes: Anonymous
classes are only allowed to occur as:
! the domain and range of either

owl:equivalentClass or owl:disjointWith

! the range (but not the domain) of
rdfs:subClassOf

47

Restriction of Features in OWL

Lite
Restrictions of OWL DL and more

owl:oneOf, owl:disjointWith, owl:unionOf,
owl:complementOf and owl:hasValue are not

allowed

Cardinality statements (minimal, maximal, and exact

cardinality) can only be made on the values 0 or 1

owl:equivalentClass statements can no longer be made

between anonymous classes but only between class

identifiers

Inheritance in Class Hierarchies

Range restriction: Courses must be taught by
academic staff members only

Michael Maher is a professor

He inherits the ability to teach from the class of academic

staff members

This is done in RDF Schema by fixing the semantics of
“is a subclass of”
! It is not up to an application (RDF processing software) to

interpret “is a subclass of

48

Appendix 2 : OWL Examples

 (from Grigoris Antoniou

Frank van Harmelen)

An African Wildlife Ontology –

Class Hierarchy

49

An African Wildlife Ontology –

Schematic Representation

!ranches are parts of trees

An African Wildlife Ontology –

Properties

<owl:TransitiveProperty rdf:ID="is-part-of"/>

<owl:ObjectProperty rdf:ID="eats">

<rdfs:domain rdf:resource="#animal"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="eaten-by">

<owl:inverseOf rdf:resource="#eats"/>

</owl:ObjectProperty>

50

An African Wildlife Ontology –

Plants and Trees

<owl:Class rdf:ID="plant">
<rdfs:comment>Plants are disjoint from animals.
</rdfs:comment>
<owl:disjointWith="#animal"/>

</owl:Class>

<owl:Class rdf:ID="tree">
<rdfs:comment>Trees are a type of plant.
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#plant"/>

</owl:Class>

An African Wildlife Ontology –

Branches

<owl:Class rdf:ID="branch">

<rdfs:comment>Branches are parts of trees.
</rdfs:comment>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#is-part-of"/>

<owl:allValuesFrom rdf:resource="#tree"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

51

An African Wildlife Ontology –

Leaves

<owl:Class rdf:ID="leaf">

<rdfs:comment>Leaves are parts of branches.
</rdfs:comment>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#is-part-of"/>

<owl:allValuesFrom rdf:resource="#branch"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

An African Wildlife Ontology –

Carnivores

<owl:Class rdf:ID="carnivore">

<rdfs:comment>Carnivores are exactly those animals

that eat also animals.</rdfs:comment>

<owl:intersectionOf rdf:parsetype="Collection">

<owl:Class rdf:about="#animal"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#eats"/>

<owl:someValuesFrom rdf:resource="#animal"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

52

An African Wildlife Ontology –

Herbivores

<owl:Class rdf:ID="herbivore">

<rdfs:comment>

Herbivores are exactly those animals

that eat only plants or parts of plants.
</rdfs:comment>

<rdfs:comment>

Try it out! See book for code.

<rdfs:comment>

</owl:Class>

An African Wildlife Ontology –

Giraffes

<owl:Class rdf:ID="giraffe">

<rdfs:comment>Giraffes are herbivores, and they

eat only leaves.</rdfs:comment>

<rdfs:subClassOf rdf:type="#herbivore"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#eats"/>

<owl:allValuesFrom rdf:resource="#leaf"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

53

An African Wildlife Ontology –

Lions

<owl:Class rdf:ID="lion">
<rdfs:comment>Lions are animals that eat
only herbivores.</rdfs:comment>
<rdfs:subClassOf rdf:type="#carnivore"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#eats"/>
<owl:allValuesFrom rdf:resource="#herbivore"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

An African Wildlife Ontology –

Tasty Plants

owl:Class rdf:ID="tasty-plant">

<rdfs:comment>Plants eaten both by herbivores

and carnivores </rdfs:comment>

<rdfs:comment>

Try it out! See book for code.

<rdfs:comment>

</owl:Class>

54

A Printer Ontology – Class Hierarchy

A Printer Ontology –

Products and Devices

<owl:Class rdf:ID="product">

<rdfs:comment>Products form a class. </rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="padid">

<rdfs:comment>Printing and digital imaging devices

form a subclass of products.</rdfs:comment>

<rdfs:label>Device</rdfs:label>

<rdfs:subClassOf rdf:resource="#product"/>

</owl:Class>

55

A Printer Ontology – HP Products

<owl:Class rdf:ID="hpProduct">

<owl:intersectionOf>

<owl:Class rdf:about="#product"/>

<owl:Restriction>

 <owl:onProperty rdf:resource="#manufactured-by"/>

 <owl:hasValue>

<xsd:string rdf:value="Hewlett Packard"/>

 </owl:hasValue>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

A Printer Ontology –

Printers and Personal Printers

<owl:Class rdf:ID="printer">
<rdfs:comment>Printers are printing and digital imaging
devices.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#padid"/>

</owl:Class>

<owl:Class rdf:ID="personalPrinter">
<rdfs:comment>Printers for personal use form
a subclass of printers.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#printer"/>

</owl:Class>

56

A Printer Ontology –

HP LaserJet 1100se Printers

<owl:Class rdf:ID="1100se">

<rdfs:comment>1100se printers belong to the 1100 series

and cost $450.</rdfs:comment>

<rdfs:subClassOf rdf:resource="#1100series"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#price"/>

<owl:hasValue><xsd:integer rdf:value="450"/>

</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

A Printer Ontology – Properties

<owl:DatatypeProperty rdf:ID="manufactured-by">

<rdfs:domain rdf:resource="#product"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="printingTechnology">

<rdfs:domain rdf:resource="#printer"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

57

Summary

OWL is the proposed standard for Web

ontologies

OWL builds upon RDF and RDF Schema:

! (XML-based) RDF syntax is used

! Instances are defined using RDF descriptions

! Most RDFS modeling primitives are used

Summary (2)

Formal semantics and reasoning support is
provided through the mapping of OWL on
logics
!Predicate logic and description logics have been

used for this purpose

While OWL is sufficiently rich to be used in
practice, extensions are in the making
!They will provide further logical features, including

rules

