

Schedule				
	Mon June 19	Introduction/ Overview (Schwinger)	1h	
		Requirements M odeling	75m	
	Tue June 20	Conceptual Modeling	30m	
		Navigation Modeling - Navigational Classes	60m	
		Project activity Sart modeling the example problem	45m	
	Wed June 21	Navigation Modeling - Contexts and Access Structures	90m	
		Project activity Navigation modelling of example problem	45m	
	Thu June 23	Interface Design	60m	
		Project activity Introduction to HyperDE – undestanding the enviroment, start of implementation of solution to example problem	75m	
	Fri June 24	Project activity Finishing the implementation of example problem	120m	
		Wrap-up Overview of what has been done Discussion on further work	30m	
© D. Schwabe, J	June, 2006			

Design Issues for Web applications

- How do we characterize what tasks are to be supported?
- What are the information items?
- How does one navigate and process information items?
- How are information items perceived?
- How do we take the user into account in the application itself?
- Can we reuse designs effectively?
- Can we be systematic in the process?

Some premises

- Should be Model-based
 - allow abstractions to control complexity
- No single model solves it all!
- Should support various possible software architectures
- Should have a diagrammatic notation whenever possible
- Domain Specific Languages (DSLs) should be employed when possible

Graphical Notations

- Are graphical notations really easier?
- Human being has special purpose hardware cognitive apparatus
- Map visual properties onto domain properties
 - shape
 - color
 - position
 - size
- Be consistent in the mapping
- Adequate choice of visual property still an art...
- Can't express everything graphically!

Useful abstractions

- User Interaction Diagrams
- Conceptual Model
- Navigation Model
- Abstract Interface
- Domain Specific Languages (DSLs)
- Design Patterns
- Frameworks
- Design Rationale

- Several design methods employ Scenarios and Use Cases
- Web applications allow the user to navigate through information items using their navigational structure.
- Business logic is separate from navigation

User Interaction Diagrams (UIDs)

- diagrammatic modeling technique
- focus exclusively on the information exchange between the application and the user.
- UIDs consider neither user interface aspects nor navigation aspects.
- UIDs support the synthesis of
 - conceptual model
 - navigation structure
 - interface elements

Proposed method

Steps

- 1. Designer familiarization with domain;
- 2. Scenario specification;
- 3. Use Case specification;
- 4. UID specification;
- 5. User validation;
- 6. Synthesis of conceptual schema.

1. Designer familiarization with Domain

- Analysis of documents and interaction with users themselves.
- Results:
 - 1. Identification of Classes of Users
 - 2. Identification of Potential Scenarios

Exemple – CD Store

1.1 User classes

Client

1.2 Potential Scenarios

- Buy a CD given its title;
- Buy a CD given a song title;
- Buy a CD given the name of a song composer;
- Buy a CD given a performer's name;
- Find information about a CD;
- Find CDs of a given genre;
- See most popular CDs;
- ...

Example – CD Store

User 2

- 1. Buy a CD given a performer's name.
 - I type the performers name or some prefix, and the application shows the performers that match the entered string.
 - I choose the perfomer of interest, and its CD's are shown, with a picture of the CD cover.
 - I select the CD I'm looking for, and it is added to my shopping cart. It would be nice to see the CD price as well.
 - I can buy more than one CD by clicking on the ones I desire.

Example – CD Store

- User 1
- 1. Buy a CD given a performer's name.

I want to buy a CD by Caetano Veloso; I type his name, and get a list of his CDs. For each CD, its year, number of tracks, availability and price are shown. It is also possible to find out more details about a CD, such as track names, track time, composer, an image of the CD cover. For some tracks it is possible to listen to an excerpt. I select the CD I want, and I can go back to see information about other CDs. To finalize my purchase, I may remove CDs from the order or add new ones. I can may confirm or cancel the order.

3. Use Case Specification

- All scenarios for the same tasks are gathered and consolidated
- A step-by-step description of the task is synthesized
- Additional information may be included
- Referral to other scenarios made when applicable

Use Case - ex: CD Store

Use Case 4: Buy a CD given a performer's name.

Scenarios: 1.1 / 2.1 / 3.4 / 4.1 / 5.2 / 6.1 / 6.4

Description:

- 1. The user enters the name (or part of it) of the performer's name. If desired, he may also enter the year or period of the CD.
- 2. The system shows a list of performers matching the input. If there is only one match, a list of CDs is shown (step 4).
- 3. The user selects the desired performer.
- 4. The system shows a list of CDs of that performer. For each CD, the title, performer name, year, price, availability, cover picture, country and genre are shown.

- (Use Case 4: Buy a CD given a performer's name.)
- 5. If the user desires, s/he may see the songs in the CD (use case **Show songs in CD**).
- If the user wishes to buy one or more CDs, s/he selects the desired ones to be included in the shopping cart. (use case Buy).
- 7. Is so desired, the user may return to step 5 to select another CD by the same performer.

6. Synthesis of Preliminary Conceptual Schema

- A preliminary Conceptual Schema is obtained by applying guidelines
- The resulting schema must be manually complemented

Attribute definitions

- Each data item becomes an attribute
- If the data item is functionally dependent on the OID of some class, but not transitively dependent on this OID,
 - · the item becomes an attribute of this class
- If the data item is functionally dependent on the OID of more than one class, but not transitively dependent on them,
 - the item becomes an attribute of an association between these classes
- If the data item is not functionally dependent of any OID, or only transitively dependent of an existing OID
 - the item becomes an attribute of a new class

Definition of Relations

- Each attribute that appears within a structure that does not correspond to its class, there is a relation between the attribute's class and the class corresponding to the structure
- This also applies to structures within structures
- Check for semantic correctness
- Determine cardinality

- For each interaction state transition (arrow) if the classes corresponding to the source and destination elements are different, define a relation between these classes
- Verify semantic correctness
- Determine cardinalities

- Identify generalizations e agregations
- Define missing cardinalities

- Eliminate reduntant cycles of relations
- Check for missing attributes (incorrect Use Cases)
- If a class has been modeled as an attribute of another class, it is likely to be a terminology problem – verify class name redundancy

- Why Navigation?
 - important functionality whose basic semantics are known – opportunity for specialized model
- Supermarket Analogy
 - Product Kits
 - Aisles

D. Schwabe, June, 2006

Product placement

- What structure/items will be navigated?
 - Nodes
- How will the user navigate among items?
 - Links

- Access Structures (choice steps)
- Contexts (Task induced grouping)
- Can navigation items be (slightly) different depending on how they are access
 - In-Context Classes

- Link based group Based on an 1-n relationship where the source instance can vary
 - "CDs by Author"
 - Group = {AuthorContext}, AuthorContext = {c | a IsAuthorOf c, p ∈ CD, a ∈ Person}

Navigation Design - Indexes

- Indexes are sets of links to navigation elements (nodes or other indexes)
- Each element of the index must have at least one link, and may have other attributes
- Types of Indexes
 - Context derived
 - Defined by query
 - Arbitrary

Abstraction: Expressing Marketing Requirements

- How should navigation be for items on promotion in an e-store?
 - "Cross-sell"
 - "Loss Leaders" e "Up-sell"
 - Promotions

Synthesizing Context Diagrams from UIDs

- Synthesize a partial context diagram for each task
- Unify partial context diagrams
- Complement result
- Derive Navigation Class diagram
- Derive In-Context Class diagram

Mapping UIDs to Contexts Diagrams

- UID structures and sets are mapped onto
 - Access structures
 - Navigation Contexts
 - Lists
- Single structures are mapped onto
 - Navigation Contexts
- UID input elements mapped onto
 - Access structures

Mapping guideline 2

- If the task requires the information about a specific element to be accessed,
 - the set of structures should be mapped onto a Navigation Context
 - · define the access to the context
 - context derived access structure
 - anchor to an object in the context
 - Name the context accordingly
- Similarly for single structures

D. Schwabe, June, 2006

<section-header>

Applying guideling 2

Image: constrained by the second by the s

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Design Rationale – Kuaba Ontology

- Vocabulary to represent design decision structure
 - Artifact
 - Idea
 - Argument
 - Decision
 - ...
- Support both reuse and group design
- Assumes designed artifact is described in a formal model

Domain-specific patterns

- In some domains, it is possible to find regular structures of problem-solution pairs
- Example: In e-commerce,
 - Opportunistic Linking (for keeping the user engaged)
 - Advising (for helping the user find products he may like)
 - Explicit Process (for helping the user understand application workflows)
 - Secure Bactrack (for maintaining consistency in navigation operations)

- Industry still uses few methods
- Tool support
- Graphical notations can work
 - careful choices!
- Specialized vocabularies help
- Models must be used properly

Thanks! Questions?

- HyperDE
 - http://server2.tecweb.inf.puc-rio.br:8000/hyperde
- OOHDM Wiki
 - http://www.tecweb.inf.puc-rio.br/oohdm
- Authoring Course wiki
 - http://www.tecweb.inf.puc-rio.br/autoria
- My email

© D. Schwabe, June, 2006

dschwabe@inf.puc-rio.br