
1

Vicente Pelechano
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia

Model Driven DevelopmentModel Driven Development
Building Automated Code Generation Methods

with Eclipse and DSL Tools

Course Overview
Introduction

to MDD
(MDD + MDA + Tools)

Mini Tutorials
DSL Tools vs Eclipse

Introduction
to MDD

(SF and DSL vs UML)

Techniques
& Tools

Supporting MDD

2

Vicente Pelechano
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia

Model Driven DevelopmentModel Driven Development

Contents
Model Driven Development
MDA
MDD vs. MDA
Software Factories
MDA vs. Software Factories
UML vs. Domain Specific Languages

3

Model Driven Development
Models in Engineering
What are Models for?
Characteristics of the Models
What is a (Software) Model?
Current Limitations of the Models
What is the MDD?

Models in Engineering

As old as
Engineerings
Engineers always
build models before
the construction of
their works and
artifacts

4

What are Models for? …

Specify the System
Structure, behavior,…
Communicate with stakeholders

Understand the System (if it exists)
Validate and Reason about the System

Identify errors and missing data and/or functionality
Prototyping (model execution)
Infer and prove properties

Guide the Implementation

Characteristics of the Models

Abstract
Emphasizing some concerns, while hidding others

Understandable
Expressed in a language understandable by users and
stakeholders

Precise
Accurate representation of the object or modeled system

Predictive
Should be used to infer correct conclusions

Cheap
Easier and cheaper to build than the sofware system

5

What is a (Software) Model?

A description of (part of) a system written in a well-defined language.
(Equivalent to specification.) [Kleppe, 2003]
A representation of a part of the function, structure and/or behavior
of a system [MDA, 2001]
A description or specification of the system and its environment for
some certain purpose. A model is often presented as a combination
of drawings and text. [MDA Guide, 2003]
A set of statements about the system. [Seidewitz, 2003] (Statement:
expression about the system that can be considered true or false.)
A model is a simplification of a system built with an intended goal in
mind. The model should be able to answer questions in place of the
actual system. [Bezivin, ASE 2001]

What is a (Software) Model?

6

Current Limitations of the Models

Only used as documentation
Most times not updated

“Gap” between the model and the system implementation
Semantic differences between the respective languages
Absence of automatic propagation of changes

Changes in the Model are not reflected in the code
Changes in the Code are not reflected in the model

The distinct models are not harmonized
Different views of the same system, but difficult to relate them
Lack of tools for model integration
Each view (language) has a semantics that is different from the rest

Lack of tools and languages for model management
Only graphical or textual editors, but “compilers”, “optimizers”, “validators”,
“model transformers”, etc. are missed.

What is the MDD?

It is a sofware development approach where the first
class citizens are the models and the model
transformations.

…Versus programs and compilers that were the analogous
paradigm 30 years ago

MDD implies the (almost) automatic generation of code
from models.
Languages (for modeling and also for transforming
models) are key factors in the MDD.
MDA is the proposal of the OMG for supporting the MDD
approach using its own standards.

7

Model Driven Architecture

MDA
MDA: Beyond Technology
(Expected) Advantages
Basic Concepts. Examples
Model Transformation
Applying MDA to build a SW Application
Advantages
Some Questions
Tool Support. Industrial CASE Tools

Model Driven Architecture

MDA is an initiative of the OMG
Announced in 2000
10 years of term to mature
It must persist during 20 years at least

Middleware platforms move aside
Models are the key
MDA promotes the separation of the specification of the
system functionality from its implementation in a specific
tecnological platform
http://www.omg.org/mda

8

Model Driven Architecture

OMG Proposal (IBM, Borland, Hewlett-
Packard, Boeing, etc.).

“MDA is an approach to use models in
software development”.

Models = main resource for software
development.

MDA: Beyond Technology

Currently, too many platforms and technologies exist
Distributed objects, components, web services…
Actually, they are not interoperable
Which is the best technology that I should use (today)?

Technology evolution is too fast
Technologies evolve…and are obsolete very soon.
Nowadays, I know very well the technologies but, which is the new hot
technology that will go out tomorrow?
How long it will be in use?
How can I protect my investments against of those continuous changes?

I would like to separate my models from the concrete technology in
which they are implemented (today)

In a way that they can evolve in a independent way....
.... Without throwing away everything and starting from scratch every time one of
them changes
.... and protecting my investment

9

(Expected) Advantages

Protect the investment against continuous technology changes
Preserve the PIM of the business model when new middleware
appears

Facilitates the development of more complex systems
Separation of different concerns in different models

Allows the simulation and automatic implementation of the
business models
Allows the integration of existing systems (COTS, legacy
systems)

ADM: Architecture Driven Modernization
Allows the specification of the functional requirements in a way
that is independent of the implementation platform

MBA: Model-Based Adquisition

Basic Concepts

Computational Independent Model (CIM)
“A model of the system and its environment, that describes the system
requirements but hides the details of its structure and internals”

Platform Independent Model (PIM)
“A model of a subsystem that contains no information specific to the
platform, or the technology that is used to realize it.”

Platform Specific Model (PSM)
“A model of a subsystem that includes information about the specific
technology that is used in the realization of it on a specific platform, and
hence possibly contains elements that are specific to the platform.”

Platform
“A set of subsystems/technologies that provide functionality through
interfaces and specified usage patterns. It is specified so that any
subsystem can use it without being aware of how the functionality
provided by the platform is implemented.”

10

Examples of MDA Models

CIM
Use Case Models capturing functional requirements

PIM
Class Diagrams or Architecture Descriptions that include components
and conectors

PSM
A UML Profile for EJB

Code
EJB components, configuration files and every file or information to
completely deploy the software system

Model Transformation

A model transformation
specifies the process of
converting one model
into another
MDA pattern includes
(at least):

a PIM,
a Platform Model (PSM),
and
a Transformation

11

Model Transformation

The MDA pattern can be
applied in a consecutive way
(several times) to produce
succesive changes:
In a transformation the resulting
“PSM” is the PIM of the
following transfomation
In this way, each “platform”
focus on a diferent aspect of
the system

Applying MDA to build a SW
Application

We start with a
Platform-
Independent
Model (PIM) that
represents the
business logic
(functionality) in a
way that is
independent of
implementation
details

12

Transformations
(between source
and target
metamodels) can
be defined with
QVT
Transformations
can be partially
or completely
automated

Generating the PSM

Applying MDA to build a SW
Application

Applying MDA to build a SW
Application

Generating to Multiple Tecnologies

Transformations
(between source
and target
metamodels) can
be defined with
QVT
Transformations
can be partially
or completely
automated

13

Applying MDA to build
a SW Application

It is easy to build
code generators
from PSMs
because they are
specified in a low
level of abstraction

Generating Implementations

Useful to:
(1) Integrate COTS,
third party and
legacy systems into
our application
(2) Support
Architecture
Driven
Modernization

NASA, DoD, Banks

Sytems Integration

Applying MDA to build a SW
Application

14

Advantages

Each model (CIM, PIM, PSM) is independent of the rest
They are defined in a separate way
Each model defines its own “entities” at an adequate abstraction level,
and it is expressed in a language that is appropriate for the kind of
stakeholders that are going to interact with it

The development process turns into a model transformation
process

Each step selects a “platform” and transform one or more PIMs into
one (or more) PSMs
...until reaching the final implementation
Transformations can be automated

Modularity, Flexibility and Easy Evolution
The models capture the business logic and they are valuable
for the company

Some Questions Arise
Can we adapt us to the new way of development?

What can we do with the development team?
Do we want to change the processes and development tools?
New skills, knowledge and tools are needed!

What can we do with programmers?
Should they be fired?
Should they be re-educated?

MDD needs to put money (investment)
How much it costs? Can we justify the expenses?

Are we changing of platform and technology continuosly?
Is the generated code efficient?
Is the generated code readable and easy to maintain?
Can be applied to every application domain?
Do we have CASE Tools supporting MDA processes?

15

Tool Support

OptimalJ
ArcStyler
AndroMDA
Poseidon
Together
ONME
...much more (OMONDO)

Tool Support

16

OptimalJ

OptimalJ

Generation of distributed applications
implemented in a J2EE architecture and the
Struts framework
Domain Model (PIM)

Class Model
Application Model (PSM)

Presentation Model (Web)
Business Model (EJB)
Database Model

Code Model

17

OptimalJ

PIM

Relational
PSM EJB PSM Web PSM

SQL Code EJB Code JSP Code

OptimalJ (PIM)

18

OptimalJ (Relational PSM)

OptimalJ (EJB PSM)

19

OptimalJ (Web PSM)

OptimalJ (Code)

20

Tool Support

ArcStyler

Model Transformations are expressed through
MDA-Cartridges
CARAT Architecture
Available cartridges for EJB, .NET, web
services, etc.
Support to the creation of new cartridges
Annotated PIMs, no PSMs

21

ArcStyler

PSM

Code

PIM

Code

PIM Tags

Tool Support

22

AndroMDA

AndroMDA is an extensible framework for code
generation that follows the principles of MDA.
Models of several UML CASE Tools can be transformed
into components in the selected platform (J2EE, Spring,
.NET).
AndroMDA is an open source tool.
Transformations are based on cartridges that generate
code from models with stereotyped elements.

AndroMDA

AndroMDA provides a set of implemented
cartdriges that allow code generation in Axis,
jBPM, Struts, JSF, Spring and Hibernate.
AndroMDA also provides a toolkit for building
cartdriges or customizing existing ones.
Support to MagicDraw, Poseidon, Enterprise
Architect and others.
Templates are based on template engines like
Velocity and FreeMarker.

23

MagicDraw

Poseidon

24

Poseidon

Tool Support

25

Together 2006

Tool Support

26

ONME

CASE Tool providing 100% code generation.
Implements MDA philosophy.
PIM to Text Code Generation (transformation
engines and repositories use proprietary
technology).
Based on the OO-Method. The Method was born
and developed at the UPV.
CARE technologies company is a spin-off whose
headquarter is located at Denia (Valencia).

ONME (Transformation Engine)

OLIVANOVA Modeler

XML
Model

Validation

Application source code
Build Scripts
Full Documentation
On-Line Help

OLIVANOVA
Transformation Engine

27

ONME (Several Technologies)

Model

OLIVANOVA
Transformation Engine

Thick/Forms
Architecture

One model, many implementations

Thin/Web
Architecture

CORBA
Architecture
EJB

Transactional
Architecture
COM+, .Net

ONME

28

MDA vs MDD

Differences between MDD and MDA:
Model Driven Development (MDD):
Software Development Approach that is
based on modeling the sw system and
generating the code from models.
Model Driven Architecture (MDA): MDD +
OMG languages (UML, CWM, MOF, QVT).

MDA = Infrastructure for MDD

Software Factories
Software Factories

Systematic Reuse and Product Lines
Model Driven Development and Domain
Specific Languages
Incremental Code Generation and
Frameworks Development
Component Assembly
Process Frameworks

Microsoft DSL Tools (VS 2005) and
MetaEdit +

29

Software Factories

“a Software Factory is a development environment configured to support
the rapid development of a specific type of application.” Jack Greenfield

“It is a software product line that configures extensible
tools, processes and content [...]
to automate the development and maintenance
of variations of a archetypical product, through the
adaptation, assembling and configuration of components
that are based on frameworks.”

MDDMDD

Software Factories

Objective: Increase the Level of
Automation in the SW Production Process
Are we really doing it?
Why does it fail? Two reasons:

The Current Economic Model
Chronic Software Development Problems

30

Software Factories
The Current Economic ModelThe Current Economic Model

“the value of an abstraction increases with its level of specificity to the problem
domain.” M.JacksonM.Jackson The more knowledge an abstraction provides, the narrower
the domain (scope) to which it applies, but the more value it provides in solving
problems in that domain.

Software Factories
Chronic Software Development Problems

Monolithic Construction
Gratuitous Generality
One Off Development (without Reuse)
Process Inmaturity

How do we move forward?How do we move forward?
Systematic Reuse,
Model Driven Development,
Development by Assembling Components, and
Process Frameworks.

31

Systematic Reuse
Economies of Scale vs. Scope

EconomiesEconomies ofof ScaleScale

EconomiesEconomies ofof ScopeScope

Systematic Reuse
Economies of Scale vs. Scope

32

SW Product Lines
What is a Software Product Line?
A software product line (SPL) is a set of software-intensive systems that
share a common, managed set of features satisfying the specific needs of a
particular market segment or mission and that are developed from a
common set of core assets in a prescribed way.

A SPLSPL produces a FamilyFamily ofof Software Software ProductsProducts
in a specific domain

Model Driven Development

The aim of the MDD is to rise the level of abstraction
(with tools)© to provide higher levels of automation (for
narrower problem domains)©.

MDD use models to capture information and to
automate their implementation by compiling models to
produce executables or using them to guide the
development.

MDD can make easier the automation of activities like
debugging and software configuration.

© Jack Greenfield

33

Model Driven Development
Domain Specific Languages (DSL/DSM)

The Software Factories are interested in precise
models that can be processed by tools and can
be used in the same way as the source code.

To rise the level of abstraction, a modeling
language should be oriented to narrower
(specific) domains than those that a general
purpose language can model.

Model Driven Development
Domain Specific Languages (DSL/DSM)

The purpose for which the language is designed must be explicitly stated,
so that an observer familiar with the domain can evaluate the language
and determine whether or not it fulfills its purpose.
The language must capture concepts used by people who work with the
domain.

The language must use names for those concepts that are familiar to the
people who use them.

The notation for the language, whether graphical or textual, must be easy
to use.
The language must have a well defined set of rules, called a grammar,
governing the way the concepts can be combined to form expressions.
The meaning of every well formed expression must be well defined, so
that users can build models that other users understand, so that tools can
generate valid implementations from models.

34

Incremental Code Generation

The key to effective code
generation is to generate small
amounts of code that span only
small abstraction gaps.
This allows the tool to take
advantage of platform features,
and therefore to produce focused,
efficient, platform specific
implementations.

One way to make code generation
more incremental is to move the
models closer to the platform.
The model can now become a view of
the code.
The tool exposes relationships and
dependencies that are hard to see in
the code, and saves time and effort by
generating the code for program
structures.

Incremental Code Generation

BUT…

35

Incremental Code Generation

This reduces the power of the
model, by limiting it to
abstractions already available on
the platform, or only slightly more
powerful, such as programming
idioms.
How then, do we work at higher
levels of abstraction? We use
more abstract models, and move
the platform closer to the models
with either frameworks or
transformations.

Incremental Code Generation
Frameworks + Transformations

We can use a framework to implement higher level abstractions that
appear in the models, and use the models to generate snippets of
code at framework extension points.
A pattern language can be used instead of a framework.
Instead of a framework or pattern language, we can generate to a
lower level DSL. We can also use more than two DSLs to span a
wide gap, leading to progressive transformation, where models
written using the highest level DSLs are transformed into
executables through a series of refinements.
This is how compilers work, transforming expressions written in a
relatively high level language like C# first into an intermediate
representation like byte code or IL, and then into a binary format for
a target platform using just-in-time (JIT) compilation.

36

Incremental Code Generation
Frameworks + Transformations

FRAMEWORKSFRAMEWORKS

TRANSFORMATIONSTRANSFORMATIONS

Component Assembling

Patform Independent Protocols
Self Description
Assembly by Orchestration
Architecture Driven Development

37

Process Frameworks

Scalable and Agile Processes.
Small infrastructure.
Processes must be adapted/specialized to build
suitable processes for a product family.
This kind of personalization only makes sense if it
can be reused more than once (Not reinvent the
wheel).

Tool Support

DSL TOOLS
METAEDIT +
And also ECLIPSE Modeling Project…

38

Microsoft DSL Tools

DSL ToolsDSL Tools provide a project wizard to create a DSL:
Allows defining and editing a domain specific language through a
graphical designer (serialized in a proprietary XML format).
Allows defining designer definitions using a proprietary XML format which
is the source to generate the code (without any manual programming) that
implements graphical modelers of the DSL.
Includes Code Generators that take a DSL definition and a designer
producing the code that implements the graphical editors.
Includes a framework to define code generators based on template
languages that take an instance of a domain model and generates code
based on the template.

SuiteSuite for defining DSLs, building a graphical designer and defining
code generators in Visual Studio 2005.

Microsoft DSL Tools
MS Visual Studio 2005MS Visual Studio 2005

DSL DSL ToolsTools

39

MetaEdit+ (http://www.metacase.com)

MetaEditor (Allows building Graphical Editors for DSLs)
Proprietary Metamodeling Notation and Repository

Provides an API for model management
Code Generation using Templates (proprietary language)
Supporting DSM (in multiple domains)

http://www.metacase.com/cases/dsm_examples.html

MetaEdit+ (http://www.metacase.com)

40

MDA vs. Software Factories

Technical Journals and personal blogs
Commercial Interest vs. Scientific
arguments
Advantages and Weak Points
Which approach should I choose?
Are these approaches compatible? Can
they be combined?

MDA vs. Software Factories

(_) Promoted by Microsoft(_) Promoted by OMG

(Ok) Integrates several mature
techniques(X) QVT not widely supported

(X) Inmature Tools and not well
known (DSL, MetaEdit+)

(Ok) More Tools (Arcstyler,
OptimalJ, EMF, etc.)

(X) New (2004)(Ok) Older

(Ok) More Guides and
Methodological Support (DSL,
Frameworks, etc.)

(X) Only (PIM->PSM)

(X) Not concrete(Ok) Provides Techniques

Software FactoriesMDA

41

MDA vs. Software Factories

Integration. WhyWhy not? not?
Development of a product line

Implementation Framework

Building a DSL
Conceptual Primitives that are Platform Independent (PIM)

MOF or UML profile
Code Generation through Transformations “DSL to
Framework”

MDA vs. Software Factories

They are compatible approaches
But not recommended by

OMG: Say No to the “Babel” of Languages
Microsoft: OMG Standards are not precise enough

The selection depends on circumstances
The final success can depend on
marketing/commercial reasons.

42

UML vs. DSL

Domain Specific Languages (DSL/DSM)
Language Oriented Programming
DSLs vs. UML/MDA

Domain Specific Languages
(DSL/DSM)

Domain-Specific Modeling raises the level of abstraction beyond programming by
specifying the solution directly using domain concepts. The final products are
generated from these high-level specifications.

Most new ideas in software developments are really new variations on old ideas.
….the growing idea of a class of tools that I call Language Workbenches - examples
of which include Intentional Software, JetBrains's Meta Programming System, and
Microsoft's Software Factories.

43

Language Oriented Programming

Language Oriented Programming
(Fowler, Dimitriev):

Environments to build domain specific
languages and to model (program) with them.

“Language Oriented Programming: The next
programming paradigm” S. Dimitriev, JetBrains
http://www.onboard.jetbrains.com/is1/articles/04/10
/lop/

Language Oriented Programming

I use Language Oriented Programming to mean the general style of
development which operates about the idea of building software around a
set of domain specific languages. I use Language Workbench as a
generic term for this new breed of tools. So a language workbench is one
way to do language oriented programming. You may also be unfamiliar with
the term Domain Specific Language (usually abbreviated to DSL). It is a
limited form of computer language designed for a specific class of problems.

44

DSLs vs. UML/MDA

“….In my view the MDA means different things to different people - and this effects how
we view the relationship between MDA and language workbenches. Certainly there
groups of MDA practitioners who are using MDA ideas to build a language
workbench. However my feeling is that the help MDA provides is partial, at best. A
broader school of Model Driven Development (MDD) echoes many of these ideas
without the links to the MDA standards - this is something that is very much in line with
the ideas of a language workbench. “

The UML PIM Camp: “You could use the UML meta-model to define a DSL
schema, but here the UML is both too much and too little”.
The MOF Camp: “MOF may be useful as an interchange mechanism between
language workbenches for DSL schemas”.
Closing Thoughts: “I've become known for having a pretty skeptical view of the
MDA. Most of this negativity is towards the UML PIM camp - I think the UML is too
complex and is too semantically incoherent to act as a serious base for future
work.”

Language Workbenches and Model Driven Architecture

