
1

Vicente Pelechano
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia

Designing Tools for Conceptual Designing Tools for Conceptual
ModellingModelling and Code Generation and Code Generation

Contents
Automated Software Production
Methods. Elements and Technology
Defining Modelling Languages and
Repositories
Designing and Implementing Visual
Editors
Model to Model Transformation
Model to Code Transformation

2

Automated Software Production
Methods

MDA and Software Factories promote the MDSD.
The development and wide adoption of CASE Tools that
provide Code Generation from Models is the most
important requirement to confirm the success of the
MDSD.
Main actors in the Software Development Industry are
aware that they must provide technology and tools that
allow building and/or adapting advanced CASE Tools to
completely support MDSD.
In this context, IBM and Borland, and other companies,
(on the one hand) and Microsoft (on the other hand) are
building advanced tools that are going to make easy the
development and deployment of MDSD.

Automated Software Production Methods
Elements

Model
Repository

Visual Editor

Model to Model
Transformation

Source
Code

Model to Text
Transformation

Supporting MDA
Transformations

PIM to PIM or PIM to PSM

3

Automated Software Production Methods
Technology

LPOOLPOO
GEF + GEF + Draw2DDraw2D
GMFGMF
DSL DSL ToolsTools ……

MOFMOF
UML UML ProfilesProfiles
EMFEMF
XMLXML
XMI,XMI,
……

ATL, MTF,ATL, MTF,
AGG, QVT AGG, QVT …… MOFScriptMOFScript,,

XSLT,XSLT,
FreeMarkerFreeMarker,,
VelocityVelocity, , ……

Model
Repository

Visual Editor

Model to Model
Transformation

Source
Code

Model to Text
Transformation

Defining Modelling Languages and
Repositories

Model
Repository

Visual Editor

Model to Model
Transformation

Source
Code

Model to Text
Transformation

4

Defining Modelling Languages and
Repositories

MOF
UML“Profiles”
EMF (eCORE)
XMI
DSL Tools. Domain Model Editor

Meta Object Facility (MOF)

Objective: “Standard” Language to
specify metamodels
Subset of UML
Used to define OMG metamodels
Current Version: 2 (based on UML 2)

5

Meta Object Facility (MOF)

Meta Object Facility (MOF)

6

MOF. EMOF (Essential MOF) and CMOF
(Complete MOF)

MOF 2.0 is built based on a subset of the UML 2.0 infrastructure
(the package Core::Basic) that provides the main concepts and
the graphical notation for its models.

MOF 2.0 is divided in two main packages, EssentialEssential MOF (EMOF)MOF (EMOF)
and Complete MOF (CMOF).Complete MOF (CMOF).
The goal of EMOF is to allow the definition of simple metamodels
using simple concepts without loosing the possibility of expressing
more complex models.

To express complex models CMOF is provided. CMOF is built from
EMOF and the Core::Constructs UML2 package.

UML Profiles
A UML profile is a grouping of UML modeling

elements that have been adapted for a
specific purpose.

«metaclase»
class

«metaclase»
Association

-color : Color

<<estereotipo>>
Colored

-peso : int

<<estereotipo>>
Weighed

+green
+yellow
+blue
+red

«enumeración»
Color

<<profile>>
WeightsAndColors

7

UML Profiles
The main goal of the profiles is:

Provide a direct mechanism to adapt an existing metamodel with
constructors that are specific of a concrete domain, platform or
method.

It is not possible to delete any constraint in the UML
metamodel, but it is possible to add new constraints
that are specific of the profile.
The semantics of UML elements cannot be changed.
The <<Profiles>> UML package contains mechanims
that allow extending the metaclasses of existing
metamodels to adapt them. In this package the following
elements are defined:

stereotype
extension

UML Profiles
Elements used in the definition of profiles:

Stererotype. Defines how a UML metaclass can be extended.

Extension. It is used to indicate that the properties of a
metaclass are extended through a stereotype.

Tag Definition. Just like a class, a stereotype may have
properties, which may be referred to as tag definitions.

Constraint. Can be attached to any modeling element in order
to redefine its semantics.

8

UML Profiles
Simple Example of a UML Profile

<<metaclass>>
Class -resolution : int

<<stereotype>>
Clock

stereotype

extension
tagged definition

«metaclase»
class

«metaclase»
Association

-color : Color

<<estereotipo>>
Colored

-weigh : int

<<estereotipo>>
Weighed

+green
+yellow
+blue
+red

«enumeración»
Color

<<profile>>
WeighsAndColors

{ context UML::InfrastructureLibrary::
 Core::Constructs::Association inv :
 self.isStereotyped(“Colored”) implies
 self.connection->forAll(isStereotyped(
 “Colored”) implies color=self.color)}

UML Profiles
A more complex Example

extension stereotype

constraint
tagged
definition

9

UML Profiles
Stereotypes:

<<Colored>> Provides a color to a UML element. Only classes
and associations can be colored.

Tagged Definition: color, of Color type (Enumeration defined in
the profile). Indicates the color of the classes and associations that
have been labeled as Colored.

<<Weighed>> Provides a weigh to a UML element. Only
associations can be attached a weigh.

Tagged Definition : weigh, of integer type. Indicates the weigh of
each association that has been stereotyped as Weighted.

Constraint over the Association:
“If two or more classes are related through a colored association,
the color of both classes must be the same as the one of the
association”.

UML Profiles
WeighsAndColors Profile Instantiation

10

Eclipse Modelling Framework

EMF is a modeling and code generation
framework to build tools and other
applications that are based on structured
data model. Too generic?

EMF is a set of Eclipse plugins.

EMF is Java implementation of the Ecore
metamodel

Ecore is a light version of MOF. Ecore is
oriented to simplicity and practicity.
Ecore designers have contributed to the
specification of Essential MOF. This is the
reason because both are similar.

(... If look inside)

11

Ecore
ECORE

Basic Editor of Ecore Metamodels

• Similar to the UML class diagram.

• Classes, attributes, references, data types, etc.

• EMF provides a basic tree editor and facilitates to
import UML Rational Rose models.

12

EMF. Building an Editor

1. Specify the Metamodel using:
1. Rational Rose
2. XML Schema
3. Annotated Java

2. Import to EMF

13

Code Generation
Given a Metamodel definition EMF provides
tools and execution support.

For Implementing the model
Structured Java code
Model-in-code
XMI and XML Schema Serializers

Classes that facilitate the development of (textual
or graphical) editors
Generates a Basic Editor in a Tree View Form

14

XML Metadata Interchange (XMI)

Rules to save MOF models using XML
Objective: Share Models
Example:

XML Metadata Interchange (XMI)

<UML:Class visibility="public" xmi.id="11" isAbstract="false" name="Universidad" >
<UML:Classifier.feature>

<UML:Attribute visibility="private" xmi.id="13" " initialValue="" type="10" isAbstract="false"
name="nombre" />

<UML:Attribute visibility="private" xmi.id="14" initialValue="" type="2" isAbstract="false"
name="fundacion" />

<UML:Operation visibility="public" xmi.id="15" isAbstract="false" name="nuevoEstudiante" >
<UML:BehavioralFeature.parameter>

<UML:Parameter visibility="private" xmi.id="17" value="" type="12"
isAbstract="false" name="estu" />

</UML:BehavioralFeature.parameter>
</UML:Operation>

</UML:Classifier.feature>
</UML:Class>

15

XML Metadata Interchange (XMI)

<UML:Association visibility="public" xmi.id="21" name="" >
<UML:Association.connection>

<UML:AssociationEnd visibility="public" isNavigable="true" xmi.id="22" aggregation="shared"
type="11" name="estudiaEn" multiplicity="1..n" />

<UML:AssociationEnd visibility="public" isNavigable="true" xmi.id="23" aggregation="none"
type="12" name="" multiplicity="0..n" />

</UML:Association.connection>
</UML:Association>

XML Metadata Interchange (XMI)

Several versions (1.X, 2.X)
A model is saved using:

A specific XMI version
A specific metamodel version

Example: XMI 1.2 / UML 1.4
¡Interoperability problems!

XMI 1.1 corresponds to MOF 1.3
XMI 1.2 corresponds to MOF 1.4
XMI 1.3 (added Schema support) corresponds to MOF 1.4
XMI 2.0 (adds Schema support and changes document format) corresponds to MOF 1.4
XMI 2.1 corresponds to MOF 2.0

16

DSL Tools. Domain Model Editor

Microsoft DSL Tools provide a graphical
designer to define domain languages.
Allows defining the metamodel in a
proprietary notation and uses XML files as
the persistence mechanism.

DSL Tools. Domain Model Editor

17

DSL Tools. Domain Model Editor

Designing and Implementing Visual
Editors

Model
Repository

Visual Editor

Model to Model
Transformation

Source
Code

Model to Text
Transformation

18

Designing and Implementing Visual
Editors

Manual Programming
GEF+Draw2D
GMF
DSL Tools. Model Designer

Manual Programming

A lot of LOC
Low productivity at a High Cost
Commercial Components and
Frameworks exist

19

Graphical Editing Framework
(GEF)

Eclipse extension to develop graphical editors of
modeling languages
Infrastructure to develop the Controller component
in a Model-View-Controller Framework

EMFEMF

GEFGEF

Draw2DDraw2D

Model

View

Controller

Draw2D

Integrated in GEF
Library to draw graphical elements

Figures, Labels, Layout Managers, Borders,
etc.

20

GMF

Graphical Modeling Framework (GMF) is
an Eclipse project that pretends to provide
a bridge between EMF and GEF. GMF
generates automatically the GEF code that
allows to build a graphical editor of EMF
models.

GMF

21

GMF

ThreeThree Basic Basic StepsSteps: :
GraphicalGraphical DefinitionDefinition, , ToolingTooling DefinitionDefinition andand MappingMapping DefinitionDefinition

GMF

DefiningDefining thethe GraphicalGraphical ElementsElements ofof thethe EditorEditor

22

GMF

DefiningDefining thethe ComponentsComponents ofof thethe ToolTool BarBar

GMF

DefiningDefining thethe mappingsmappings betweenbetween
thethe DomainDomain ElementsElements andand thethe GraphicalGraphical ElementsElements

23

GMF

GeneratedGenerated GraphicalGraphical EditorEditor

DSL Tools. Designer Definition

A “designer definition” is used with a domain model
(language) to build a “designer” or graphical editor of the
DSL primitives.
Designer Definitions are specified in a XML format
The XML document includes the definition of:

The diagrams, including graphical shapes and conectors.
Mappings of the diagrams (shapes and conectors) to the
elements of the underlying domain model (or DSL).

24

DSL Tools. Model Designer

XML XML StructureStructure

DSL Tools. Model Designer

ShapesShapes DefinitionDefinition

25

Model to Model Transformations

Model
Repository

Visual Editor

Model to Model
Transformation

Source
Code

Model to Text
Transformation

Model to Model Transformations

Manual Programming
MTF
AGG
ATL
QVT

26

Manual Programming
Read the XML or XMI File or DB Tables
etc… and load into memory + apply
transformations + save the results in the
format of the target models
Or…
Use a library generated by EMF to:
1. Load the source Model
2. Navigate, create, delete and modify elements
3. Save the target model

MTF (Model Transformation
Framework)

IBM participated in the Request For Standards de
OMG about MOF 2.0 Query/View/Transformation
(QVT) (2004).
IBM has developed MTF as a prototype that
implements some concepts of QVT and it is based on
EMF.
Provides:

A declarative language to define mappings between models
A transformation engine that can interpret the mappings and
apply the transformations
An Eclipse Plugin

27

MTF (Model Transformation
Framework)

The general idea behind the term model
transformation is to produce models from other
models given as input, according to predefined
relationships between elements.
It assumes that these models are described by
compatible meta-models, in order to express
these correspondences in a consistent way. In
the scope of QVT, model transformation relates
to MOF models. MTF applies these concepts to
EMF models.

MTF (Model Transformation
Framework)

28

MTF (Model Transformation
Framework)

Transformations in MTF are defined in a declarative way:
you specify a set of relations between model classes,
and then let the MTF engine perform the transformation
actions using these relations as input.
The relations that drive the transformations are
expressed in a language called the Relation Definition Relation Definition
Language (RDL)Language (RDL).
RDL allows the definition and application of relations
between classes, based on correspondences between
structural feature.

MTF. Example: Transforming the UML
Class Diagram to a Relational Design

Mapping a model to a schema

29

MTF. Example: Transforming the UML
Class Diagram to a Relational Design

Mapping a class to a table

MTF. Example: Transforming the UML
Class Diagram to a Relational Design

Running the Transformations

30

MTF. Example: Transforming the UML
Class Diagram to a Relational Design

Mappings Generated by MTF

The Attributed Graph Grammar System
http://tfs.cs.tu-berlin.de/agg/

Allows defining model transformations
Based on graph grammars
Advantages:

Intuitive Editor (Implemented in Java)
Transformations are graphically defined
Provides libraries to implement our own generator

Drawbacks:
The Source model must be represented as a graph in a concrete
format
The Target model is obtained as a graph
The transformation algorithm is inefficient (slow)

AGG

31

Graph Grammar:
Set of transformation rules

Left Hand Side (LHS)
Non Application Condition (NAC)
Right Hand Side (RHS)

Source Graph (Host Graph)
When a LHS is detected in the source
graph and the NAC does not hold, the
LHS is substituted by the RHS

AGG

Source Graph: Relationships between men and women

Transformation: Married Couples are happy if other Lovers do not exist

AGG. Example

32

ATL

ATL (Atlas Transformation Language)
Hybrid Language (declarative + imperative)
Suitable to implement PIM to PSM
transformations
It is based on the following principles:
1. Models are first class entities
2. The transformations are also Models
3. Allows specialization and composition of

transformations

http://www.sciences.univ-nantes.fr/lina/atl/atlProject/

ATL Approach

MOF

MMa MMbATL

Ma Mb

Mma2Mmb.atl
Source Target

METAMODEL

MODEL

33

Language Definition (1/3)

4 sections:
HEADER

Defines the transformation module name and declares the input and
output modules.

module SimpleClass2SimpleRDBMS;
create OUT : SimpleRDBMS from IN : SimpleClass;

• IN and OUT are variables
• More than one model can be declared as an input or output.

IMPORT

Declares libraries that are going to be imported.

uses strings;

Language Definition(2/3)
HELPER

(Global) Variables and functions can be defined.

helper context SimpleClass!Class def :
allAttributes : Sequence(SimpleClass!Attribute) =
self.attrs->union(
if not self.parent.oclIsUndefined() then

self.parent.allAttributes->select(attr |
not self.attrs->exists(at | at.name = attr.name)
)

else Sequence {}
endif

)->flatten();

helper context Book!Book def :
getAuthors() : String =

self.chapters->collect(e | e.author)->asSet()
->iterate(authorName; acc : String = '' |

acc +
if acc = '' then authorName
else ' and ' + authorName
endif

);

OPERATION

ATTRIBUTE

34

Language Definition(3/3)
TRANSFORMATION RULES

Defines the transformation between an input model and an output
model by relating their metamodels.

rule Book2Publication {
from

b : Book!Book (
b.getNbPages() > 2

)
to

out : Publication!Publication (
title <- b.title,
authors <- b.getAuthors(),
nbPages <- b.getNbPages()

)
}

Transformation Types

Module: Classical Transformations between
models.
Query: Allows querying model primitives and
calculating output that shouldn`t necessarily be
a model. Useful to generate code or text from a
model.
Library: Groups a set of ATL functions that can
be used in several and distinct places.

35

ATL + Eclipse

Defines three transformation languages:
Relations (Declarative)
Core (Declarative). Same expressive power than
Relations but simpler (atomic).
Operational Mappings (Imperative)

Core and Relations provide the same semantics
but at different levels of abstraction
Depends on two OMG specifications:

MOF 2.0
OCL 2.0

MOF 2.0 Query/View/Transformation

36

MOF 2.0 Query/View/Transformation

Queries take a model as input and select
specific elements from that model
Views are models that are derived from
other models
Transformations take a model as input
and update it or create a new model

QVT Metamodels Relationships

Operational
Mappings

Black
Box

Core

RelationsToCore
Transformation

Relations

imperative declarative

37

The Relations Language

Declarative (defines the what and not the how)
Support complex pattern-matching of objects
Transformations are specified as a set of
relationships
Transformations can be invoked for:
1) Checking the consistency between models

(Checkonly Domains)
2) Modifying a model to enforce the consistency

(Enforced Domains)

The Relations Language
transformation umlRdbms (uml : SimpleUML, rdbms : SimpleRDBMS) {

relation ClassToTable /* maps classes to tables */ {
domain uml c:Class {

namespace = p:Package {},
kind='Persistent',
name=cn }

domain rdbms t:Table {
schema = s:Schema {},
name=cn,
column = cl:Column {

name=cn+'_tid',
type='NUMBER'},

primaryKey = k:PrimaryKey {
name=cn+'_pk',
column=cl}

}
when { PackageToSchema(p, s);}
where { AttributeToColumn(c, t);}

}
...

Transformations
Model Types
Relations
Domains
When and where clauses

38

The Relations Language

transformation umlRdbms (uml : SimpleUML, rdbms : SimpleRDBMS) {
top relation PackageToSchema {…}
top relation ClassToTable {…}
relation AttributeToColumn {…}

}

top-level and non-top-level relations
checkonly and enforced

relation PackageToSchema /* map each package to a schema */{
checkonly domain uml p:Package {name=pn}
enforce domain rdbms s:Schema {name=pn}

}

The Relations Language

Proposes a graphical notation:

39

The Operational Mappings Language

Imperative (defines the how and not the what)
Represents the definition of a unidirectional
transformation expressed imperatively.
It is used to implement Relations when it is
difficult to give a purely declarative specification
of how to populate a Relation.

The Operational Mappings Language

40

Operational Mappings -Together 2006

Model to Text (Code)
Transformations

Model
Repository

Visual Editor

Model to Model
Transformation

Source
Code

Model to Text
Transformation

41

Model to Text (Code)
Transformations

Manual Programming
XSLT
Template Languages (Engines)

Velocity
FreeMarker

MOF2Text (MOFScript)

Manual Programming
Read the XML or XMI File or DB Tables
etc… and load into memory + apply
transformations (implemented in any PL) +
generate the code

Use the EMF generated library to:
1. Load the model
2. Navigate through or Query the model + println()

42

XSL Transformations
XSL Transformations (XSLT)

http://www.w3.org/TR/xslt
XML Document Transformation Language
Defined by W3C
Advantages:

Many tools exist to define and to apply XSL Transformations
Supported by Web Browsers
Efficient transformation algorithm

Drawbacks:
Textual Definition
Complex Transformations need very large XSLT documents.

XSL Transformations. Example
Input Document:
<ejemplo>

<HolaMundo />

</ejemplo>

XSLT:
<xsl:template match=“ejemplo">

<html>

<body>

<xsl:apply-templates>

</body>

</html>

</xsl:template>

Output Document:
<html>
<body>

<p> Hola Mundo </p>
</body>
</html>

<xsl:template match=“HolaMundo">

<p> Hola Mundo </p>

</xsl:template>

43

Apache Velocity

‘Lightweight’ Template Engine
Can be embeded in any kind of applications
Open source and Implemented in Java
Uses its own template language (called VTL)
VTL allows including references to objects
defined in Java code.

Basic Example
<HTML>
<BODY> Hello $customer.Name!
<table>
#foreach($mud in $mudsOnSpecial)

#if ($customer.hasPurchased($mud))
<tr> <td>

$flogger.getPromo($mud)
</td></tr>

#end
#end
</table>

<HTML>
<BODY> Hello Pepe!
<table>

<tr> <td>
MUD 1 special price: 100$!

</td></tr>
<tr> <td>
MUD 2 special price: 100$!

</td></tr>
<tr> <td>
MUD x special price: 100$!

</td></tr>
</table>

44

VTL Template Language
Directives (#...)

Control Structures: #if, #foreach
Variable Assignment

#set($list = [1,2,3])
Basic Extensibility (Macros):

#macro(maybe $variable $alt)
#if("$!variable" == "")

$alt
#else

$variable
#end

#end

---------> #maybe($person.name “Pepe”)

Advanced Extensibility (new
directives can be defined) through
an API

Variables ($....)
Can be passed through the
context or declared by means of
#set
Suppot to JavaBeans properties

$person.name ≡ person.getName()
#set($person.name = “Pepe”)

Support to method invocation
$mi_string.trim()

Dynamic evaluation of the VTL
code (eval())

#set($list = [1,2,3])
#set($object = '$list')
#set($method = 'size()')
$render.eval($ctx, "${object}.$method")

Invocation from Java
Invocation of Templates

1. Initialization and Configuration of Velocity
Velocity.init();

2. Context instance creation (< HashTable)
VelocityContext context = new VelocityContext();

3. Inserting data into the context
Model miModelo = obtainModel();
context.put("model",miModelo);
context.put(“nombre”, “prueba”);
context.put …

4. Interpret the template in the context
Template template = Velocity.getTemplate("mytemplate.vm");
String result = template.merge(context);

45

FreeMarker (http://freemarker.sourceforge.net/)

Java Template Engine
How does it works?:

Java Data Structures +
Templates +
Program =
Template filled with the input data

FreeMarker (http://freemarker.sourceforge.net/)

Own Template Language
<html>
<head>
<title>Welcome!</title>

</head>
<body>
<h1>Welcome ${user}!</h1>
<p>Our latest product:
${latestProduct.name}!

</body>
</html>

Provides directives:
Control structures: if, else, elseif; swicht; list, break
functions: macro, nested, return, function ...
and much more: flush, stop, ftl, t, lt, rt, nt, attempt,
recover, visit, recurse, fallback......

46

FreeMarker (ejemplo)

package ${activator.javaPackage.name};

public class ${activator.fullName} {

<#list activator.getMethods() as meth>

${method.visibility} ${meth.type} ${meth.name}(

<#list meth.getFeatureParameters() as param>

${arg.type} ${arg.name}

<#if param_has_next>,</#if>

</#list>

){ ${meth.body} }

</#list>

<#import "JavaClass.ftl" as classTemplate>

<#list activator.getNestedClasses() as nested>

<@classTemplate.classNoPackage class=nested>

</#list>

FreeMarker (Example)

public class Activator implements BundleActivator {

public void start(BundleContext context)

{ Properties props = new Properties();

props.put("Language", "English");

context.registerService(

DictionaryService.class.getName(),

new DictionaryImpl(), props

);

}

public void stop(BundleContext context)

{ // NOTE: The service is automatically unregistered. }

Continues in the following slide...

47

FreeMarker (Example)

private static class DictionaryImpl

implements DictionaryService

{

String[] m_dictionary;

public boolean checkWord(String word)

{

m_dictionary = { "welcome", "to",

"the", "osgi", "tutorial" };

word = word.toLowerCase();

for (int i = 0; i < m_dictionary.length; i++)

{

if (m_dictionary[i].equals(word))

{ return true; }

}

return false;

}

}

}

MOF2Text

Nowadays, a little “gap” exists in the MDA specifications.
MOF provides a mechanism to define modeling languages.
MOF QVT defines a standard to transform a MOF model to another.
Standard Mappings like the MOF to XMI allow serializing models.
However, a specification that defines how to produce text from mHowever, a specification that defines how to produce text from models odels
does not exist. does not exist.

MOF2Text RFP pretends to convert models to code.
Developers need a way to specify and control how the source code
and documentation is produced.
MOF2Text wants to provide a standard and practical way to write
specifications for generating text (code) from level M2 MOF models.

48

MOFScript

MOFScript is an Eclipse plugin that allows
generating text from MOF based models.
It is being developed in the MODELWARE
European Project and it is available as open
source.
MOFScript is prototype implementation that is
based in some of the recommendations included
in the OMG MOF Model to Text RFP.

MOFScript
MOFScript
(http://www.modelbased.net/mofscript/)
Eclipse Plugin.

49

MOFScript

Code Generation

Easy creation of Output Files

Simple Language

MOFScript

Easy Access to the EMF Metamodel Repository

ModularModular: Transformations can be included

50

MOFScript

Complete Environment

MOFScript

Visual Access to the Source Metamodel

51

MOFScript
Example of C# Code Generation

That’s all…

…but it’s only the Beginning of MDSD

Let’s have a look to the most representative Tools for supporting MDD

