
1

Laboratorio de Investigación y Formación en Informática Avanzada

Facultad de Informática, Universidad Nacional de La Plata

Calle 50 esq. 115 - Primer piso (1900) La Plata, Argentina

TE: (0221) 422 8252 http://www-lifia.info.unlp.edu.ar

Advanced Web Application
Modeling and Design

Dr Gustavo Rossi

LIFIA. Facultad de Informática-UNLP

Message of the Course. Web

Engineering has a dark side

� Web Applications require good modeling
practices (e.g. Object-Oriented)

� Modeling practices are not enough; we also
need to know good design practices

� Even those applications without complex
behaviors pose design challenges to the
developer

2

Agenda and Outline

� Motivation and Examples

� Review of Advanced Separation of Concerns

� Managing Volatile Functionality

� Introducing Roles in Web Applications

� Business Processes in Web Applications

� Personalizing Web Applications

� Separation of Concerns in Requirements

Motivation and Examples

� Complex Web Software deal with a multitude
of design concerns

� They offer varied and complex functionality

� Even the well-known applications (not just the
research prototypes) show these aspects

Let us explore Amazon.com

3

The Amazon example

Notice the different kind of functionality; some is stable, other volatile

Another example

The Emi draw of tickets for the Rolling Stones concert

4

Products support different behaviors

Can we sell our chocolates as we sell our CDs or books?

Product pages comprise multiple

concerns

5

And…

And…

6

Finally…

� When we navigate to an object, the context is
relevant (e.g. “a la” OOHDM)

Which are our software building tools?

� We will base our discussions on the use of
“advanced” approaches for separation of
concerns

� Fundamental for our discussion are:

� Design Patterns

� Other techniques for separation of concerns,

such as aspects

7

Volatile Functionality

How does we solve

this situation?

Is this a navigational or conceptual problem?

Exercise

� Model the CD class and its more important
relationships in UML

� Build the navigational Diagram corresponding
to this part of the site

� Discuss possibilities with respect to the
volatile functionality

15/20 MINUTES

8

Possible Solutions

� In the conceptual model:

� A Class Hierarchy

� An attribute in Class CD

� A relationship with the FishBowl

Possible Solutions

CD

V ideoE nhanc ed

Cd

P lainCD

Problems with this approach?

9

Possible Solutions

C D

n a m e

p rice

.. .

Vid e o

Problems with this one?

Possible Solutions

V ideo

CD

nam e

pric e

...

exhib its

In the Conceptual Model

10

Possible Solutions

C D N o d e

n a m e

p rice

...

vid e o

In the Navigational Model

Where video is a view

on the relationship in the

conceptual model

Why these approaches fail?

Another Example

Which are the differences in this example?

11

Slight Changes in Behaviors

We can not sell our

Chocolate

Is this a peculiarity of a sub-class of Product?

What if so? What if not?

Why volatile functionality is a

problem?

� Should we clutter design models? (edit and
then edit again?)

� Should we manage the problem at
implementation time? (Why not?)

12

An Abstract Point of View

� We need to enrich the behavior of some
objects

� This enrichment is dynamic (in run-time)

� The pattern of enrichment is irregular (not all
instances of a class)

Decorators to the Rescue

Pattern Decorator

� Intent:

Attach additional responsibilities to an object

dynamically. Decorators provide a flexible

alternative to subclassing for extending

functionality

13

Structure of a Decoration

Anatomy of Decoration

aDec orator :

Dec orator

A Conc reteCom ponent :

Conc reteCom ponent

C l ie nt

Clients Interact with Decorators instead of

Components

14

Exercise

� How do we solve the problem of the CD
enhanced with Video?

� Which are the trade/offs in design?

� What we gain? What we loose?

� Decorators in Conceptual Models vs.
Navigational Model

15 Minutes

Implementing Volatile Models

� Strategy:

Viewing Volatile Functionality as a

model decoration

� However:

How to deal with irregular
enhancements in the navigational
model

15

An Extension of OOHDM for volatile

functionality
� We decouple volatile from core functionality: We define two

design models; a core model and a model for volatile features
(called VService Layer).

� New behaviors, i.e. those which belong to the volatile
functionality layer are modeled as first class objects, e.g.
following the Command [4] pattern.

� To achieve obliviousness, we use inversion of control, i.e.
instead of making core classes aware of their new features, we
invert the knowledge relationship. New behaviors know the base
classes on top of which they are built.

� We use a separate integration layer to bind core and volatile
functionality. In this way, we achieve reusability of core and
volatile features and manage irregular extensions.

Volatile Functionality in OOHDM

16

Example: Draw for tickets

V ola ti le M ode l

DrawNode

date : Date

t im e : Tim e

Core M ode l

CDNode

t it le : S tring

perform er : S tring

photo : P ic ture

pric e : float

A rt is t

nam e

CD

tit le

edit ionDate

photo

pric e
perform ed b y

views

Core Na viga tiona l Cla sse sCore Na viga tiona l Cla sse s V o la ti le Na viga tiona l Cla sse s

P art ic ipant

nam e

em ail

num ber

Rec ordCom pany

nam e

rec orded b y

Tour

nam e

art is t

Conc ert

date

plac e

s tar tTi m e

c onc erts

Draw

date

t im e

views

part ic ip ants

1-Separate core functionality from volatile
functionality

Example…

V o l a ti le Mod e l

DrawNode

date : Date

tim e : Tim e

V o la tile Na viga tio na l C la sse s

P artic ipant

nam e

em ai l

num ber

Draw

date

tim e

views

part ic ipants

2- Behaviors, which belong to the volatile functionality layer are

modeled as first class objects, following the Command pattern.

17

Example….

V ola ti le M ode l

DrawNode

date : Date

t im e : Tim e

Co re M ode l

CDNode

t itle : S tring

perform er : S tring

photo : P ic ture

pric e : float

Tour

nam e

A rtis t

nam e

art is t

CD

tit le

edit ionDate

photo

pric e
perform ed b y

views

P artic ipant

nam e

em ail

num ber

Rec ordCom pany

nam e

rec orded b y

Co re Na viga tiona l Cla sse sCo re Na viga tiona l Cla sse s V ola ti le Na viga tiona l C la sse s

Draw

date

t im e

views

part ic ipants
organiz edB y

Concert

date

plac e

s tartTim e

c onc erts

toA ss is tTo

3-To achieve obliviousness, we use inversion of control,
i.e. instead of making core classes aware of their new
features, we invert the knowledge relationship. New
behaviors know the base classes on top of which they
are built.

Our Solution

V ola ti le M od e l

DrawNode

date : Date

t im e : Time

Co re M od e l

CDNode

t it le : S tring

perform er : S tring

photo : P ic ture

pric e : float

Tour

nam e

Artis t

nam e

art is t

CD

t itle

edit ionDate

photo

pric e
perform ed b y

views

P artic ipant

nam e

em ail

num ber

Rec ordCom pany

nam e

rec orded b y

Core Na viga tio na l Cla sse sCore Na viga tio na l Cla sse s V ola ti le Na vig a tion a l C la sse s

Draw

date

tim e

views

part ic ipants
organiz edB y

Conc ert

date

plac e

s tartTim e

c onc erts

toA ss is tTo

4- We use a separate integration layer to bind core and volatile

functionality, in order to achieve reusability of core and volatile

features and manage irregular extensions.

18

The Affinity of a Volatile Service

� It is defined as the set of nodes from which
the service can be accessed

� We use a specification in the style of the
OOHDM node definition language

FROM C1…Ci WHERE predicate

Ci indicates the classes to which the WHERE
predicate is applied

Examples of Affinities

Affinity Draw

From CDNode where (performer = Rolling Stones)

Integration: Linkage (DrawNode)

Additions: [DrawSpec: Text.

Conditions: Anchor (ToConditions)

Results: Anchor (ToResults)]

Instance Affinity RobThomas (Fishbowl)

FROM CDNode WHERE title = 'Something to Be'

AND performer = 'Rob Thomas'

Integration: Extension

19

Examples of Affinities

Instance Affinity StephenKingFishbowl (Fishbowl)

FROM BookNode WHERE author = 'Stephen King'

AND bookTitle = ‘Cell’

Integration: Extension

What other kinds of integrations can we make?

Advantages of the Approach

� By decoupling the integration from the services and
the core model, we can use different integration
schemas at different time and for different instances.
For example, with new CDs it is reasonable to extend
the CD with the live performance; we can later use a
Linkage relationship and later eliminate the access to
the service.

� Using different affinity specification we can fine tune
the way in which different objects are affected by the
service.

� Obliviousness allows that the evolution of core and
service classes is independent from each other and
also from the integration specification.

20

Exercise

� Given the previous approach for volatile
services, devise a possible implementation
stategy thinking in terms of well-known web

architectures

15 Minutes

Exercise

Suppose a Museum of modern art which organizes exhibitions of
artworks and at the same times acts as an Auction house for those
artworks whose owners are interested in selling their artworks. From the
application point of view, we must support the organization of exhibitions,
i.e., indicating the room in which each artwork will be placed, and the
organization of auctions. Auctions can take place in different places and a
calendar of auctions for a particular artwork should be maintained.
Artworks may be in restoration; in this case, besides the basic artwork
information, we aim to know the restorer’s identity and the date in which
the restoration will finish. We aim to build different Web applications
according to the intended task. In an application for exploring the
museum virtually, users can navigate all artworks (even those who were
sold), information about artists, restorers, etc. They can even add
comments on artworks that might be useful for administrator to assess
which artworks are more “popular”. Another Web application must
support the work of administrators, allowing to “tag” artworks to be sold in
auctions, included in exhibitions, or put into restoration. Expert
evaluations are also dealt with in this application. Finally, we might be
interested in an application to proceed with the auction on-line (as in
www. sothebys.com)

21

Simplified Conceptual Model

Museum

Room

Exhibition

Artwork

AuctionManager

Comments

Artist

Owner

Evaluation

Expert

Person

*

*

*

*

1
*

*

* *

*

* *

* *

*

*

*

*

*

*

*

*

1

*

Auction*

* **

HistoricalPeriod

* *

*

*

Restorer

*

*

Problems with this model

� Artwork exhibits too many unrelated services:

� For example, when being schedule for an

artwork, it has to “know” the auction date and

details.The actual price, doesn’t make sense

in other contexts

� Auctions in Restoration also need specific

information.

� What information is “intrinsic” of an Artwork?
what information depends on a relationship?

22

Problems with this model

� The Person class hierarchy seems correct
but:

� What if the same person is an owner and an

artist

� What information is intrinsic of a Person?

In the Navigational Model

Museum

Artwork
Exhibition

ArtistHistoricalPeriod

Which similar problems arise?

23

Example

The Virgin of the Rocks

Full title : 'The Virgin of the

Rocks (The Virgin with the

Infant Saint John adoring the

Infant Christ accompanied

by an Angel)'

about 1491-1508

LEONARDO da Vinci

1452 - 1519

The Virgin of the Rocks

Full title : ĥThe Virgin of the Rocks (The Virgin with the

Infant Saint John adoring the Infant Christ accompanied

by an Angel), about 1491-1508

LEONARDO da Vinci

1452 - 1519

Italian

Leonardo da Vinci transformed art from the 'dry and hard

manner' (Vasari) of the Early Renaissance to the more

monumental and complex style of the High Renaissance.

Leonardo was born near Vinci in Tuscany and was

trained in Florence by the sculptor and painter

Verrocchio. In about 1483 he moved to Milan to work for

the Sforza family and was there until the city was invaded

by the French in 1499. He may have visited Venice

before returning to Florence in 1506.

A second period in Milan lasted until 1513; this was

followed by three years based in Rome . In 1517, at the

invitation of the French king , Leonardo moved to the

Ch‰teau of Cloux, near Amboise in France , where he died

in 1519.

From Artist From Exhibition

Summary of Problems: During

Conceptual Modeling

� How to separate behavioral concerns which
depend on relationships to simplify class’

interfaces?

� How to indicate those aspects (attributes and
behaviors) which are only meaningful in a
concern?

24

Summary of Problems: During

Navigation Modeling

� How to indicate that the same node shows
different information according to the
incoming link?

� How to indicate that outgoing links also
depend on the access path?

Natural Types vs Role Types

� Natural types are those types such that an
instance of the type can not end belonging to
the type without loosing its identity; Natural

type properties does not depend on any
collaboration

� Examples: Person, Artwork

25

Role Types

� A role type characterizes an entity by some
role it plays in relationship to another entity or
other entities, and if left, does not give up

identity of entities. A role type characterizes
the dynamic state of an entity when it is
involved in some collaboration with others

� Examples: Artist, Owner, InAuction

Objects play Roles

� The role type x of an object y refers to those

additional properties of y (attributes and behaviors)
that are critical for the object in a particular kind of

collaboration, i.e. when interacting with other objects

in a certain context.

� We say that y is playing the role x

� Those properties of y that exist independently of any
role are called intrinsic properties; they are defined by

the natural type; meanwhile the properties that the

object “acquires” when playing a role are called

extrinsic.

26

Further Concepts

� Role Types vs Role Instances

� Role Types as Classes

� Role Generalization/Specialization

Roles in the Conceptual Model

Artwork

- name
- year

- artist ()
- owner ()

InAuction

InRestauration

InAuction

- schedule
- place

- bids
- addbid ()
- bestBid ()

InRestauration

- restorer
- date

27

Roles in the Navigational Model

Artwork

Exhibition Artist

InExhibition
Biography

1452 - 1519

Italian

Leonardo da Vinci transformed art from the 'dry and hard

manner' (Vasari) of the Early Renaissance to the more

monumental and complex style of the High Renaissance.

Leonardo was born near Vinci in Tuscany and was trained in

Florence by the sculptor and painter Verrocchio. In about 1483

he moved to Milan to work for the Sforza family and was there

until the city was invaded by the French in 1499. He may have

visited Venice before returning to Florence in 1506.

A second period in Milan lasted until 1513; this was followed by

three years based in Rome. In 1517, at the invitation of the

French king, Leonardo moved to the Château of Cloux, near

Amboise in France, where he died in 1519.

A more complete model

Museum

- name
- exhibitions (Index)
- artworks (Index)

Artwork

- name
- year
- artist (Anchor)

- image

Exhibition

- openingDate
- themes

- artworks (Index)

Artist

- name
- period (Anchor)

- biography

- artworks (Index)
- image

HistoricalPeriod

- dates

- mainEvents

- artworks (Index)

offers

exhibits

contains

createdc
re

a
te

d
B

y

a
rt

w
o
rk

s

InExhibition
authorBio

ArtistHistory
historyContext

InPeriod
context livedIn

28

Discussion

� Implementing Roles

� Constraints on Roles

� Roles vs. Decorators (are they the same)

