
6/27/2006

1

Services, Features and Policies

Stephan Reiff-Marganiec

University of Leicester

21 Apr 2005 Stephan Reiff-Marganiec 2

evolution: features

• Market requires new functionality

• New functionality is provided by features

• Features are add-ons to basic service

– call waiting, conference calling

– (idea exists in office software, cars, ...)

• They can be deployed

– in the network (IN, POTS)

– on the end-device (IPTel, MobileComms)

• Development hindered by FI problem and lack of
good SE frameworks (more later ...)

6/27/2006

2

21 Apr 2005 Stephan Reiff-Marganiec 3

[Reiff-Marganiec, Turner: FIW 2003; Reiff-Marganiec, Turner: FORTE 2002;
Reiff-Marganiec: Objects, Agents, Features (LNCS) 2004]

(re)configuration: policies

• Features

– allow only minimal end-user configurability

– do not consider user’s context

– do not support high-level goals

• Policies

– can provide all of the above

– require appropriate languages, supporting architectures
and development processes

– can lead to policy conflict (again more later)

21 Apr 2005 Stephan Reiff-Marganiec 4

evolution on steroids: services

• Today
– Web Services

– Grid services

– Service Oriented Architectures

• Can provide new functionality

• No basic service needed!

• Systems can be assembled/ configured at runtime

we will look only at basics of SoA, L. Baresi will do more …

6/27/2006

3

21 Apr 2005 Stephan Reiff-Marganiec 5

outline

• Features and Services

• Policies

• Policies for end-user services in telecommunications

• End-user services in service oriented architectures

Features and Services

6/27/2006

4

21 Apr 2005 Stephan Reiff-Marganiec 7

telecommunications systems

• switchbords (< 1960s) manual; electronic

• stored program control switches

• large distributed systems

• safety critical (4 nines)

• technological evolution ...

– monolithic
• expensive, one component does all, reactive and fixed features

– distributed
• cheap micro processors, features and intelligence at edge of network, interfaces

(JAIN, …)

– contextual
• always on, capture and exchange of policies and constraints , context: presence,

ad hoc, alarms

21 Apr 2005 Stephan Reiff-Marganiec 8

traditional features

• additional functionality on top of basic service

– telecomms, automobile industry, software, ...

• provided by operator (or third party)

– long(ish) time to market

• limited customisability

– can subscribe/unsubscribe

– modify few parameters

• example: call forwarding

– on/off, forward to

– no notion of forward some, special circumstances ...

6/27/2006

5

21 Apr 2005 Stephan Reiff-Marganiec 9

basic service

21 Apr 2005 Stephan Reiff-Marganiec 10

example features

6/27/2006

6

21 Apr 2005 Stephan Reiff-Marganiec 11

the feature interaction problem ...

• features are added functionality for a basic service
that are independently (of each other) working
correctly

• e.g.
• Call Forwarding, 1471, Call Waiting

• equation editor, graphics plugin

• car alarm, accident escape system

• burglar alarm, climate control

• however, two or more features together might not
work correctly � the feature interaction problem

talking

rin
ging

Alice Bob

Carl
Daniel

?
forward

or
call waiting tone

21 Apr 2005 Stephan Reiff-Marganiec 12

… and worse

• legacy telecomms systems

– large distributed systems

– evolving over time

– fragile code

– no reliable documentation

• deregulated market

– no design time information about third party features

– short development periods

– features presence might only be recognized at runtime

6/27/2006

7

21 Apr 2005 Stephan Reiff-Marganiec 13

feature interaction

• [ComNet Jan 2003: Calder-Kolberg-Magill-Reiff-Marganiec]

• not bugs!

• offline techniques

– applied at design time: formal methods & SE techniques

• online techniques

– applied at runtime: feature manager or negotiation

• hybrid approaches

– combine strength of offline and online

21 Apr 2005 Stephan Reiff-Marganiec 14

fi in other domains

• Home networks

– Ongoing work: Kolberg, Magill and Wilson (Stirling)

• Component based systems

– Blair, Jones and Reiff-Marganiec

• Web services

– Weiss

• Aspect oriented programming
– Blair et al (Lancaster)

6/27/2006

8

21 Apr 2005 Stephan Reiff-Marganiec 15

handling fi

• Feature Interaction must

– be detected

– be resolved

• requires

– software engineering frameworks

• that allow automatic detection,

• and suggest concrete solutions

– runtime environments

• that allow automatic detection,

• and automatic resolution

Design

Deployment

Execution

Decommissioning

21 Apr 2005 Stephan Reiff-Marganiec 16

service

• “Unit of work done by a service provider to
achieve desired result for consumer”

[eforce; www.eforceglobal.com]

• A service is logical manifestation of some
resource combined with some business logic

• Service interaction is facilitated by message
exchange

• Reuse at business level

6/27/2006

9

21 Apr 2005 Stephan Reiff-Marganiec 17

soa

• Service oriented Architecture

– Application architecture with all functions defined
as independent services with well defined
interfaces which can be called in defined
sequences

– It’s a way of thinking about building software

• Keywords: loosely coupled, event-driven,
assembly and integration

21 Apr 2005 Stephan Reiff-Marganiec 18

publish-find-bind

Registry

Subscriber Provider

WSDL

WSDL

query

Dynamic binding and
use of service

6/27/2006

10

21 Apr 2005 Stephan Reiff-Marganiec 19

ws: the “standards”

Application

QoS Description

Business
Integration

Content

Messaging

Discovery

TransportHTTP, …

XML

SOAP

Routing, Addressing

Reliable Messaging

Coordination

Transaction
Security

M
a

n
a

g
e

m
e
n

t

UDDI

Orchestration and Composition

Interaction

Choreography and Coordination

WSDL

Business Level Agreements

S
e

m
a

n
tic

 W
e

b
 ()R

D
F

, O
W

L

A
cc

e
s
s
ib

ility

M
e

s
s
a

g
e

S
e

rv
ic

e
S

O
A

21 Apr 2005 Stephan Reiff-Marganiec 20

offline fi methods + service comp.

– static analysis detects
problems
• (FM, Testing, Design Principles)

– resolution by redesign

– good if details are known
(intra-company, ...)

– for policies automatic
methods can be used at
upload time, user then can
redefine policies

– not suitable when design
details are unavailable (open

market)

– Manually compose well
understood services

– BPEL etc

– User needs to understand
technical details

– Some tool support possible

– Not good if we want just in
time composition

– Self healing systems require
much effort

– What about end-user goals?

6/27/2006

11

21 Apr 2005 Stephan Reiff-Marganiec 21

online fi methods + service comp.

– dynamic analysis for
detection

– automatic resolution

• lookup tables (early
approaches)

• domain specific, general
rules

• mutually best (negotiation)

– two main classes, but little
work
• FMs [Cain, Marples, Reiff-

Marganiec]

• Negotiation [Velthuijsen]

– can handle black-box
features/ policies

– Just in time composition

– Intelligent agents for users
• Embedding policies and

goals

– Synthesis using proof
planning or similar techniques

– Good, but in my opinion a
little far away

• I don’t think we are sure
what artifacts and
information is required to
make this work

– Does not (yet) take into
account user issues

• Telecomms experience …

Policies

6/27/2006

12

21 Apr 2005 Stephan Reiff-Marganiec 23

policies

information which can be used to modify the

behaviour of a system (Lupu, Sloman, 1999)
matches Mark Ryan’s understanding of feature:

description of how to transform the base system

• policies are used in the context of

– multimedia and distributed systems

– agent based systems

– systems management

– security

– quality of service management

• usually for access control

21 Apr 2005 Stephan Reiff-Marganiec 24

policies...

• ... mean many things to many people:

–Guiding principles and procedures

–Management policy,i.e.

• Event -> Condition -> Action (ECA)

–Authorization (access control) policy

–OPI (Obligation, Permission, Interdiction)

• Deontic logic

6/27/2006

13

21 Apr 2005 Stephan Reiff-Marganiec 25

for instance

• Web Services Policy Language (WSPL)

• OASIS (Organization for the Advancement of
Structured Information Standards) a vendor
organization including Sun, IBM, Microsoft, ecc.

• Subset of XACML (Access Control)

• Policies are in disjunctive normal form, i.e. a policy
is a disjunction of rules, and each rule is a
conjunction of predicates.

21 Apr 2005 Stephan Reiff-Marganiec 26

movie service

• The PolicySet for this service may contain
– an Authorization Policy,
– a Service Option Policy, and
– a Privacy Policy.

• In turn, the Service Option Policy, consists of
– a Gold-level Rule and
– a Tin-level Rule.

• The Gold-level Rule establishes that
– the Monthly-fee is $20,
– the number of Movies-per-month is 5, and that
– the available Bandwidth is grater than 320kbps.

6/27/2006

14

21 Apr 2005 Stephan Reiff-Marganiec 27

also...

• Web Services Policy Framework (WSPolicy)
• Proposed by a consortium (BEA Systems, IBM, Microsoft,

SAP, Sonic Software, and VeriSign)
• Mostly concerned with WS Capabilities
• policy is used to convey conditions on an interaction

between two Web service endpoints. Typically, the provider
of a Web service exposes a policy to convey conditions
under which it provides the service. A requester might use
this policy to decide whether or not to use the service.

21 Apr 2005 Stephan Reiff-Marganiec 28

their example…

• … of policy is one stating that a Web service uses
one out of a list of cryptographics algorithms.

• Both WSPL and WSPolicy have a notion of policy
merge (negotiation, intersection)

• Both are XML based

6/27/2006

15

21 Apr 2005 Stephan Reiff-Marganiec 29

what’s the problem?

• They characterize the services, not the business
application.

• We may want to say:

– if a call is not returned in X minutes, send a reminder e-
mail to the callee

– an emergency call is never forwarded

– I prefer to fly with BA on long-distance flights

– When evaluating and comparing my data don’t compare
to Joe’s

21 Apr 2005 Stephan Reiff-Marganiec 30

ponder
• An example:

– The General Manager can see all of the information.
– The Departmental manager cannot see the agenda of the employee.
auth+ GMgetEmployeeAuth {

subject General_Manager;
target DeptFile_Server;
action getEmp(ssn);

} // GMgetEmployeeAuth
auth+ DMEmployeeAuth {

subject Dept_Manager;
target DeptFile_Server;
action getEmp(ssn) {result = reject(result, agenda);};

} // DMEmployeeAuth

• Problem: what are target and source??
– Crucial as auth policies are enforced by target, oblig by subject

6/27/2006

16

21 Apr 2005 Stephan Reiff-Marganiec 31

dimensions of policy conflict

21 Apr 2005 Stephan Reiff-Marganiec 32

a policy model

6/27/2006

17

Policies for end-user services in
telecommunications

21 Apr 2005 Stephan Reiff-Marganiec 34

motivation

• (tele)communications central to daily activities

• users communication needs

– enabling communications

• user should be in control

– always on, mobility,

• merging of communications technologies
– traditional telecommunications � email

– conferencing � video

– device control � home automation

– wireless, mobile � ad hoc networking

– VoIP…

6/27/2006

18

21 Apr 2005 Stephan Reiff-Marganiec 35

policies as features

• policies can be used to control calls

• are user definable/editable

• make use of context

• more flexible

• more abstract/higher level

• we could

– enhance features with new capabilities to do the same

– but would need to move away from “operator provides”
paradigm

21 Apr 2005 Stephan Reiff-Marganiec 36

enhanced call control architecture

6/27/2006

19

21 Apr 2005 Stephan Reiff-Marganiec 37

what matter’s to users

preferencepreference actionsactions conditionsconditions

wishwish

mustmust

prefer alwaysprefer always

dondon’’t nevert never

forwardforward

blockblock

send to voicemailsend to voicemail

originate calloriginate call

contactcontact
time = lunchtimetime = lunchtime

calleecallee = Joe= Joe

caller has caller has

appointmentappointment
Appel (french): “a call”
[Reiff-Marganiec 2003: Technical Report CSM-161]

21 Apr 2005 Stephan Reiff-Marganiec 38

policy wizard

6/27/2006

20

21 Apr 2005 Stephan Reiff-Marganiec 39

policy lifecycle

• Definition

• Deployment

• Enforcement

• (Decommission/Undeploy/Update)

21 Apr 2005 Stephan Reiff-Marganiec 40

policy: examples

• lecturers are unavailable at lunchtime to discuss
any matters with students, except it is an
emergency

• I prefer to speak to John or Mary if Paul is busy

• if my call is not returned within one hour, send
an email reminder to the callee

• always notify me when an expected visitor arrives
at reception

• When the police calls, include the company
lawyer in the call

• don’t disturb Ken at lunchtime on Fridays

6/27/2006

21

21 Apr 2005 Stephan Reiff-Marganiec 41

policy definition

• PDL: Policy Definition Language

– some exist for other application areas

– not suitable for call control policies

• lack of notion of preference

• Ponder: subject enforces oblig; target enforces auth

• user friendly

• tool support (templates, editors, syntax check)

21 Apr 2005 Stephan Reiff-Marganiec 42

appel: an example

<policy owner=alice@here.com applies to=alice@here.com

id=Forward incoming calls enabled=true

valid from=2004-12-24T00:00:00 valid to=2005-01-05T23:59:00

changed=2004-08-12T11:33:00>

<preference>should

<policy rule>

<trigger>connect incoming

<action arg1=bob@here.com>forward to(arg1)

[Policies for Call Control; Turner et al, CSI 2005]

6/27/2006

22

21 Apr 2005 Stephan Reiff-Marganiec 43

policy rules

• Policies are composed of 1 or more rules

• Rules are composed by operators:
• “and then”

• “or then”

• “and”

• “or”

• Each rule is ECA (event-condition-action)

– Event and condition are optional …

• There are modalities (temporal, deontic, …)

21 Apr 2005 Stephan Reiff-Marganiec 44

deploying policies

• we considered upload via SIP REGISTER

– similar to CPL, SIP CGI

– use SIP CGI to get message to policy server

• better: direct connection to policy server

– more flexible (e.g. better feedback)

– independent of SIP

• Policy Server provides TCP/IP Socket for upload

– accepts 5 messages:
• UPLOAD, UPDATE, DELETE, ENABLE, DISABLE

– returns
• SUCCESS, FAIL

6/27/2006

23

21 Apr 2005 Stephan Reiff-Marganiec 45

static interactions: an example

enterprise.com has existing policy:
• all calls during working hour should be answered by a person

within 5 rings.

me@enterprise.com defines new policies:
• if I don’t answer calls within 3 rings forward them to my

voicemail if it is not my boss.

• when I am on holiday forward business calls immediately to

jim@enterprise.com

check policies defined by user ����

check user vs. domain policies ����

caller might get voicemail

21 Apr 2005 Stephan Reiff-Marganiec 46

static interaction handling

• conflicts of policies of one user or within hierarchy
– overlapping constraints,

– more specific vs. more generic policy

• detection: policy server checks on “upload”
– static analysis:

• conflicting actions

• overlapping conditions

• overlapping triggers / trigger vs. goal

• resolution

– redesign: fail returns information

6/27/2006

24

21 Apr 2005 Stephan Reiff-Marganiec 47

when can interactions occur?

• most work considers addition of features

• removal often discarded:

– “no one knows what breaks if you remove x, so leave it
in” (Marples)

• upload, update, update

– new functionality is “added”

• delete, deactivate

– functionality is “removed”

– important when users can define functionality!

21 Apr 2005 Stephan Reiff-Marganiec 48

policy enforcement

• Policies are enforced at runtime

– call setup requests are intercepted

– Policies screen requests and change these

6/27/2006

25

21 Apr 2005 Stephan Reiff-Marganiec 49

dynamic interactions: an example

mary@enterprise.com has policy:
• I prefer to speak to John if Paul is busy.

paul@elsewhere.com has policy:
• I expect that my calls are redirected to Joanne when I am busy.

•Mary rings Paul

•Paul is busy

Mary rings Paul; Paul is busy

conflict: forward to Joanne or John??

���� Joanne: using preference

? could also negotiate ...

21 Apr 2005 Stephan Reiff-Marganiec 50

dynamic interaction handling

• policies defined by different users (outside
hierarchy) might be inconsistent
– requires dynamic detection and resolution

– feature manager approaches

• maybe guided by generic offline analysis

– negotiation approaches

• first proposed 1993; never took off …

• pre negotiation: resolve conflicts before actions are committed to call
path (e.g. 3 way conference)

• post negotiation: resolve conflicts as they are detected

• this is were agents fit in!

– we suggest a combination of both

6/27/2006

26

21 Apr 2005 Stephan Reiff-Marganiec 51

handling policy conflict

End-user services in service oriented
architectures

6/27/2006

27

21 Apr 2005 Stephan Reiff-Marganiec 53

web services

“One benefit of this model [web services] is that its
infrastructure can borrow from the experience of
the telephony utilities industry, especially on user-
driven service provisioning, usage tracking, and
billing.”

H. Kreger, Fulfilling the Web Services Promise, ACM Communications June 2003.

[not quite so neat; user driven sp is still very simple, but there has been some work]

21 Apr 2005 Stephan Reiff-Marganiec 54

the “holy grail”

• Automated clients that browse repositories, find
services and discover how to invoke them and
deliver results – do all this automatically when
required.

• “JUST IN TIME SOFTWARE”

• Need rating services, certification services … trust is
a problem in such an open world

• Need layers for business people (and industry) to
use this
– Semantic web ideas heavily based on academic work such
as theorem provers.

6/27/2006

28

21 Apr 2005 Stephan Reiff-Marganiec 55

requirements and descriptions

<<service>>

Basic 1

<<service>>

Basic n

<<service>>

Composition

User

desc

req

desc

req
• Service
Composition

• Service
Description

• Service-Oriented
Business
Modelling

21 Apr 2005 Stephan Reiff-Marganiec 56

enhanced services architecture

Users

Ad-hoc Service Engine

Service Descriptions

Global Policies

Domain Policies

Policies

Data

Goal

Policies
$

$
Cost

$

VISIO
CORPOR
ATION

Guarantees
Services

W
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

Synthesis ExecutionComposite Service

Result

UDDI

BPEL
WS Transactions

WS Coordination

SOAP, REST

6/27/2006

29

21 Apr 2005 Stephan Reiff-Marganiec 57

composition approaches

• BPEL

– activities (message exchanges) between partners form a process

• OWL-S
– “enables” automatic discovery, invocation, composition, interoperation and

execution monitoring

• Web Components

– Services as components; reuse, specialisation and extension; composition
logic embedded in class definition

• Algebraic Methods
– Essentially process algebras: question is what to include

• Model-Checking/ FSMs

– Services described as FSMs, model checking returns composition if it exists

• Corectness? Scalability? Non-functional properties? Automatic composition? End-
user perspective?

21 Apr 2005 Stephan Reiff-Marganiec 58

service descriptions

• WSDL
– ports and methods are most useful, rest is just technical info for

bindings

• OWL-S
– Based on RDF

– Allows to express pre and post conditions

– Quite “clumsy” looking

• UDDI
– Directories with human readable descriptions

• Shortcomings:
– Claims not verified, no understanding as to what information is

required, mostly functional aspects covered

– To technical – does not consider the user …

6/27/2006

30

21 Apr 2005 Stephan Reiff-Marganiec 59

service oriented business modelling

• Describe user side

– requires ontologies, taxonomies, …

• folksonomy?

• User policy language

– only allows concepts for which we have implementations;
the policies then “describe” how these can be put
together

– synthesis somewhat simplified

– Based on appel

• Can be upgraded once other synthesis techniques
become available

21 Apr 2005 Stephan Reiff-Marganiec 60

open problems with appel

• No specialisation for Web Services
• (yet ... But hopefully soon)

• Natural language semantics
– unsuitable for reasoning on service composition

• provide Appel with a translation semantics in a language equipped with a
reasoning framework

• First candidate: DSTL (Carlo and Laura’s previous work)

• Appel : ECA, DSTL : ECP

• Why not other policy languages?
– Ponder, KAoS: access control -> clear roles of source and target;

intended for Sys Admins; not addressing “business domain”

6/27/2006

31

21 Apr 2005 Stephan Reiff-Marganiec 61

business modelling

• Business Modelling Languages

– Mostly workflows: UML activity diagrams, BPML, Stephen’s proposal
(BPM 2006 paper)

– Main concept: tasks and the ordering of execution

• Data and control flows might be separate

– At business level, but specific for each process

– We also have overarching constraints that apply to many processes,
are possibly more agile

21 Apr 2005 Stephan Reiff-Marganiec 62

current solutions 1

• Approach 1: Composition as Requirements

– BPEL:

– DAML-S Code snippets taken from Milanovic
and Malek: Current Solutions for
Web Service Composition. IEEE
Internet Computing, Nov/Dec 04

6/27/2006

32

21 Apr 2005 Stephan Reiff-Marganiec 63

• Approach 2: Specialised Requirements Language

– BPMN:

– UML:

A

B

C

+ +

A

B

C

current solutions 2

21 Apr 2005 Stephan Reiff-Marganiec 64

wedding example

• Business goal g = “plan wedding”;

• Broken down into objectives (composite tasks):
– ct1 = plan pre-wedding celebrations;

– ct2 = plan preparations;

– ct3 = plan legalities;

– ct4 = plan ceremony;

– ct5 = plan post-ceremony celebrations;

– ct6 = plan honeymoon.

• Tasks are arranged according to result timeline, not according to
execution timeline!
– e.g. ceremony and post-ceremony celebrations often planned in parallel.

• Policies:
– The entire event should not cost more than £10k;

– The ceremony and post-ceremony celebrations should be on the same day;

– The honeymoon should be booked through a known and trusted travel agency.

6/27/2006

33

21 Apr 2005 Stephan Reiff-Marganiec 65

booking the honeymoon 1
Flows:

• Control runs from start to finish;

• lines indicate control flow routes;

• A task is executed when control reaches it;

• Control proceeds when the task has finished.

Flow Split:

• Control proceeds down each output
simultaneously;

• No limit on number of output flows;

• Parallel split workflow pattern

Conditional Merge:

• Forces synchronisation;

• Mandatory and optional flows;

• Specifies minimum number of flows;

• Discriminator workflow pattern.

21 Apr 2005 Stephan Reiff-Marganiec 66

booking the honeymoon 2

Strict Preference:
• New workflow pattern.

Flow Merge:
• Incoming set of control

flows contains only one
active flow;

• No synchronisation
issue;

• (Multiple) Merge
workflow pattern.

Random Choice:
• All tasks invoked;
• When a first gets to a

“commit”, all others are
cancelled;

• New workflow pattern.

6/27/2006

34

21 Apr 2005 Stephan Reiff-Marganiec 67

other notation

• Flow Junction Operator:
– Left output is primary;

– Output flow chosen according to
a test;

– Exclusive choice workflow
pattern.

• Bounded cycles allowed:
– For both composite and atomic

tasks;

– Can be modelled with flow
junction and flow merge.

– (since we only allow one control flow
input, a flow merge function should be
used).

21 Apr 2005 Stephan Reiff-Marganiec 68

policies and business models

• Policies can restrict choices of workflow

– The total cost of service must be less than 100£

• Policies can expand workflow

– P = “We need at least 3 quotes before ordering”

Place order + P
Get quote Get quote Get quote

Place order

3

6/27/2006

35

any questions?

more details:

http://www.cs.le.ac.uk/~srm13

