Nome	Non scrivere qui	A
MATRICOLA LILILI	1 2 3 4 5 6	

Università di Trento — Polo di Rovereto

FACOLTÀ DI SCIENZE E TECNICHE DI PSICOLOGIA COGNITIVA APPLICATA

Terza Prova Intermedia di Analisi Matematica A.A. 2004-2005 — Rovereto, 23 Dicembre 2004

Riempite immediatamente questo foglio scrivendo in stampatello cognome, nome e numero di matricola. Scrivete cognome e nome (in stampatello) su ogni foglio a quadretti.

Il tempo massimo per svolgere la prova è di due ore. Non potete uscire se non dopo avere consegnato il compito, al termine della prova.

È obbligatorio consegnare sia il testo, sia tutti i fogli ricevuti; al momento della consegna, inserite tutti gli altri fogli, compreso quello con il testo, dentro uno dei fogli a quadretti.

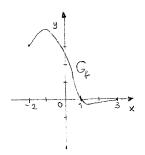
Potete usare oltre al materiale ricevuto e il vostro materiale di scrittura solo i vostri appunti. Non usate il colore

1) Calcolate
$$\int_{1}^{2} [(2x+1)^{2} - \frac{1}{x}] dx$$
; $\int_{0}^{1} (e^{2x} + 3e^{x})e^{-x} dx$; $\int_{-1}^{2} ||x| - 1| dx$.

- 2) i) Studiate brevemente la funzione $f(x) = -x^4 + 2x^3$ e tracciate un grafico approssimativo nel piano cartesiano xy.
 - ii) Scrivete l'equazione della retta tangente r al grafico di f nel punto (2,0) e rappresentatela graficamente.
 - iii) Determinate l'area della regione piana delimitata dal grafico di $\,f\,,\,$ dalla retta tangente $\,r\,$ e dalla retta $\,x=0\,.$
- 3) i) Studiate (insieme di definizione, segno, comportamento agli estremi dell'insieme di definizione, derivabilità, punti critici e monotonia) la funzione definita da

$$f(x) = \frac{(x^2 - 1)}{e^x}$$

e rappresentatela graficamente nel piano cartesiano xy .


- ii) Determinate, se esistono, il massimo e/o il minimo (e gli eventuali punti di massimo e/o minimo) di f su $[0, +\infty[$.
- iii) Calcolate $\int_0^1 \frac{f(x)}{(x-1)(x+1)} dx.$

- 4) Risolvete graficamente le seguenti disequazioni:

 - i) $\log |x| \le 1 |x|$; ii) $\sqrt[3]{x} \le \frac{1}{(x+1)^2} 1$.

- Sia $f: [-2,3] \to \mathbb{R}$ la funzione in figura. Quali delle seguenti affermazioni sono vere? (motivate le risposte)
 - i) f è crescente su [-1,3];

 - ii) f e crescente su [-1, 3]; iii) la derivata f' soddisfa $f'(-1) \ge f'(1)$; iii) $\int_{-2}^{3} f(x) dx \ge 0$; $\int_{0}^{3} f(x) dx \ge 0$; iv) f ha massimo e minimo su [-2, 0]; v) la funzione integrale $F(x) = \int_{-2}^{x} f(t) dt$ ha massimo in x = 1.

Un'urna contiene n palline contrassegnate con numeri diversi. Vengono estratte due palline, generando così una sequenza ordinata di due numeri. Se le possibili sequenze estratte sono 20, quante sono le palline nell'urna?

Nome	Non scrivere qui	В
Matricola LIIII	1 2 3 4 5 6	

Università di Trento — Polo di Rovereto

FACOLTÀ DI SCIENZE E TECNICHE DI PSICOLOGIA COGNITIVA APPLICATA

Terza Prova Intermedia di Analisi Matematica

A.A. 2004-2005 — ROVERETO, 23 DICEMBRE 2004

Riempite immediatamente questo foglio scrivendo in stampatello cognome, nome e numero di matricola. Scrivete cognome e nome (in stampatello) su ogni foglio a quadretti.

Il tempo massimo per svolgere la prova è di due ore. Non potete uscire se non dopo avere consegnato il compito, al termine della prova.

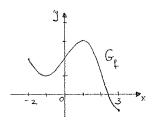
È obbligatorio consegnare sia il testo, sia tutti i fogli ricevuti; al momento della consegna, inserite tutti gli altri fogli, compreso quello con il testo, dentro uno dei fogli a quadretti.

Potete usare oltre al materiale ricevuto e il vostro materiale di scrittura solo i vostri appunti. Non usate il colore rosso.

1) Calcolate
$$\int_0^1 (e^{-2x} - 2e^{-x})e^{2x} dx$$
; $\int_{-2}^1 ||x| - 1| dx$; $\int_1^2 \left[\frac{1}{2x} - (3x + 1)^2\right] dx$.

- 2) i) Studiate brevemente la funzione $f(x) = x^4 3x^3$ e tracciate un grafico approssimativo nel piano cartesiano xy.
 - ii) Scrivete l'equazione della retta tangente r al grafico di f nel punto (3,0) e rappresentatela graficamente.
 - iii) Determinate l'area della regione piana delimitata dal grafico di $\,f\,,\,$ dalla retta tangente $\,r\,$ e dalla retta $\,x=0\,.$
- 3) i) Studiate (insieme di definizione, segno, comportamento agli estremi dell'insieme di definizione, derivabilità, punti critici e monotonia) la funzione definita da

$$f(x) = \frac{(4-x^2)}{e^x}$$


e rappresentatela graficamente nel piano cartesiano $\,xy\,.$

- ii) Determinate, se esistono, il massimo e/o il minimo (e gli eventuali punti di massimo e/o minimo) di f su $[0, +\infty[$.
- iii) Calcolate $\int_{-1}^{0} \frac{f(x)}{(x^2 4)} dx.$

- 4) Risolvete graficamente le seguenti disequazioni:
 - i) $\log(x+1) \le 1 |x+1|$;
 - ii) $\sqrt[3]{x} > -\frac{1}{(x-1)^2} + 1$.

- 5) Sia $f: [-2,3] \to \mathbb{R}$ la funzione in figura. Quali delle seguenti affermazioni sono vere? (motivate le risposte)
 - i) f è crescente su [-1,1];
 - ii) la derivata f' soddisfa $f'(0) \ge f'(2)$;

 - ii) la derivata f socialista f (o) = f (2), iii) $\int_{-2}^{3} f(x) \, dx \le 0; \qquad \int_{0}^{3} f(x) \, dx \ge 0;$ iv) f ha massimo e minimo su [0,3]; v) la funzione integrale $F(x) = \int_{-2}^{x} f(t) \, dt$ ha minimo in x = -2.

Un'urna contiene n palline contrassegnate con numeri diversi. Vengono estratte due palline, generando così una sequenza ordinata di due numeri. Se le possibili sequenze estratte sono 30, quante sono le palline nell'urna?