
1
1

J0
1

Scripting the Web

Client Side
ECMAScript

&
Document Object Model

J0
2

JavaScript History

• Java was born as “LiveScript” at the beginning of the
94’s.

• Name changed into JavaScript (name owned by
Netscape)

• Microsoft responds with Vbscript
• Microsoft introduces JScript (dialect of Javascript)
• A standard is defined: ECMAScript (ECMA-262,

ISO-16262)

2
2

J0
3

JavaScript Myths

JavaScript is NOT simple
Simple tasks are indeed simple

JavaScript is NOT Java

PartialYESGraphics

NOYESNetworking
YESNOBrowser Control

JavaScriptJava

J0
4

JavaScript is…

Scripted (not compiled)
Powerful

Object-based
Cross-Platform

Client and Server

3
3

J0
5

JavaScript allows…

Dynamic Web Sites
Dynamic HTML (DHTML)

Interactive Pages/Forms
Server-Side CGI Functionality

Application Development

J0
6

JavaScript can…

Build Objects
Use Events

Enforce Security
Embed or Componentize

4
4

J0
7

Base

• Syntax is C-like (C++-like, Java-like)
case-sensitive,
statements end with (optional) semicolon ;
//comment /*comment*/
operators (=,*,+,++,+=,!=,==,&&,…)

• Basic data types
integer, floating point, strings (more later)

• Loosely typed variables (Basic-like) var x=3;

Core
Core

J0
8

Statements

• if (expression) {statements} else {statements}
• switch (expression) {

case value: statements; break;
…
default: statements; break;

 }
• while (expression) {statements}
• do (expression) while {statements}
• for (initialize ; test ; increment) {statements}

Core
Core

5
5

J0
9

JavaScript and HTML

Between <SCRIPT> and </SCRIPT> tags
Between <SERVER> and </SERVER> tags
In a <SCRIPT SRC=“url”></SCRIPT> tag

In an event handler:
<INPUT TYPE=“button” VALUE=“Ok”

onClick=“js code”>
<B onMouseOver=“Jscode”>hello

Core
Core

J0
10

Strings

a=“foo”; b=‘tball’
Useful methods:

 a+b => football a<b => true
a.charAt(0) => f

indexOf(substring), lastIndexOf(substring)
charCodeAt(n),fromCharCode(value,…)
concat(value,…),slice(start,end)
toLowerCase(), toUpperCase()
replace(regexp,string), search(regexp)

Core
Core

6
6

J0
11

Strings

a=“foo”;

TAG-related methods:
a.bold() => foo
big(), blink(), fontcolor(), fontsize(), small(),
strike(), sup()

anchor(),link()

Core
Core

J0
12

Functions

function f(x) {return x*x}

function add(x,y) {return x+y};
function multiply(x,y) {return x*y};
function operate(op,x,y) {return op(x,y)};

operate(add,3,2); => 5

Core
Core

7
7

J0
13

 Example
<HTML>
<HEAD>
<SCRIPT>
function fact(n) {

if (n==1) return n;
return n*fact(n-1);

}
</SCRIPT>
</HEAD>
…

Core
Core

J0
14

 ExampleCore
Core

<BODY>
<H2>Table of Factorial Numbers </H2>
<SCRIPT>
for (i=1; i<10; i++) {

document.write(i+"!="+fact(i));
document.write("
");

}
</SCRIPT>
</BODY>
</HTML>

8
8

J0
15

<BODY>
<SCRIPT>
n=window.prompt("Give me the value of n",3)
document.write("fact("+n+")="+fact(n));
document.write("
");
</SCRIPT>
</BODY>
</HTML>

ExampleCore
Core

J0
16

Objects

Object: A data structure with methods;
a special method is the “constructor”.

function Rectangle(w, h) {
this.width=w;
this.height=h;
this.area=function(){return this.width*this.height}
}

a=new Rectangle(3,4); a.area() => 12 a.width => 3

Instance variables

method

Core
Core

9
9

J0
17

Objects

Actually, JavaScript does NOT have classes and inheritance.

Moreover, the approach we have shown is not the most
efficient in terms of memory allocation.

It would be better to use the “prototype” feature, which can
be consideres a STATIC object

Rectangle.prototype.area=function(){return this.w*this.h}

Core
Core

J0
18

Arrays

a = new Array()
a[0]=3; a[1]=“hello”; a[10]=new Rectangle(2,2);
a.length() => 11

Arrays can be
SPARSE, INHOMOGENEOUS , ASSOCIATIVE

a[“name”]=“Jaric”

z=new Rectangle(3,4); z[“width”]  z.width

Core
Core

10
10

J0
19

Object hierarchyDOMDOM

frames[] history

anchors[] applets[] embeds[]

Button Checkbox Form Hidden

Input Password Radio Reset

Select Submit Text Textarea

elements[]

forms[] links[] plugins[] images[]

document location navigator screen parent top

Window

The Most

Important Slide

 Objects

Symbol means containment (has-a)

Dashed line means “is an instance of”

J0
20

Window

Other properties
status – defaultStatus
name

Main properties
Objects
history
frames[]
document
location
navigator
screen
parent – top

“A web browser window or frame”

DOMDOM

11
11

J0
21

Window

Main methods
alert(), prompt(), confirm()
focus(), blur()
moveBy(), moveTo()
resizeBy(), resizeTo()
scroll(), scrollBy(), scrollTo()
setInterval(), clearInterval()
setTimeout(), clearTimeout()

DOMDOM

J0
22

Screen

Main properties
availHeight, availWidth
height, width
colorDepth, pixelDepth
hash

“Information about the display”

DOMDOM

12
12

J0
23

Navigator

Main methods
javaEnabled()

Other properties
Info on available plugins, but only in Netscape

Navigator!

Main properties
appName
appVersion
Platform

“Information about the browser in use”

DOMDOM

J0
24

History

Main methods
back()
forward()
go(+/-n)
go(target_substring)

Main properties
lenght

“The URL history of the browser”

DOMDOM

13
13

J0
25

Location

Main methods
reload()
replace()

Main properties
href
protocol, hostname, port
search
hash

“The specification of the current URL”

DOMDOM

J0
26

Document

Main methods
open()
close()
clear()
write()

Other properties
bgColor, fgColor, linkColor, vlinkColor
lastModified
title, URL, referrer, cookie

Main properties
Arrays of Component Objects
anchors[]
applets[]
embeds[]
forms[]
links[]
plugins[]

“An HTML document”

DOMDOM

14
14

J0
27

Image

Main properties
border [width in pixels]
height
width
src [URL of the image to be displayed]

“An image embedded in an HTML document”

DOMDOM

J0
28

Events

Document, Image, Link,
Text elements

KeyDown+KeyUp (*)onKeyPress

Document, Image, Link,
Text elements

User releases keyonKeyUp

Document, Image, Link,
Text elements

User presses key (*)onKeyDown

Link, Image, LayerMouse moves off elementonMouseOut

Link, Image, LayerMouse moves over elementonMouseOver

Document, Image, Link,
button

User releases mouse button (*)onMouseUp

Document, Image, Link,
button

User presses mouse button (*)onMouseDow
n

Document, Image, Link,
button

User clicks twiceonDblClick

Link, buttonUser clicks once. (*)onClick

(*) Return false to cancel default action

DOMDOM

15
15

J0
29

Events

WindowWindow is resizedonResize

FormForm submission requested(*)onSubmit

FormForm reset requested (*)onReset

WindowDocument is unloadedonUnload

Window, ImageDocument or image finishes
loading

onLoad

ImageLoading interruptedonAbort

ImageError while loading imageonError

Select, text input elementsUser selects/deselects a text
and moves focus away

onChange

TextElement, Window, all
form elements

Element loses focusonBlur

TextElement, Window, all
form elements

Element gains focusonFocus

(*) Return false to cancel default action

DOMDOM

J0
30

 Input

XXXXHidden

XXXXXXXXXXXXSelect

XXXXXXXXXXXFileUpload

XXXXXXXXXXXPassword

XXXXXXXXXXXTextarea

XXXXXXXXXXXText

XXXXXXXXXXSubmit

XXXXXXXXXXReset

XXXXXXXXXXXXRadio

XXXXXXXXXXXXCheckbox

XXXXXXXXXXButton

defaultChecked
checked

defaultValue

form

length

name
options[] selectedIndex

type value

blur()
click()

focus()
select()

onblur
onchange

onclick
onfocus

Methods

Event
Handlers

Properties

Properties

Objects

DOMDOM

16
16

J0
31

Form

Main properties
action [destination URL]
method [get/post]
name [name of Form]
name [destination Window]

Elements[] [list ;of contained elements]

Main methods
reset()
submit()

“An HTML input form”

DOMDOM

J0
32

Events
<HTML>
<HEAD>
<TITLE>Form Example</TITLE>
<SCRIPT LANGUAGE="JavaScript1.2">
function setColor() {

var choice;

choice = document.colorForm.color.selectedIndex;

switch(choice) {
case 0: document.bgColor = "FF0000"; break;
case 1: document.bgColor = "00FF00"; break;
case 2: document.bgColor = "0000FF"; break;
case 3: document.bgColor = "FFFFFF"; break;
case 4: document.bgColor = "FFFF00"; break;
case 5: document.bgColor = "FF00FF"; break;

}
}
</SCRIPT>

DOMDOM

17
17

J0
33

Events
<BODY>
<CENTER><H1>Color Changer</H1></CENTER>

Select Your Favorite Background Color:
<FORM NAME="colorForm">
<SELECT NAME="color" onChange=setColor() >

<OPTION VALUE="red">Red <OPTION VALUE="green">Green
<OPTION VALUE="blue">Blue <OPTION VALUE="white">White
<OPTION VALUE="yellow">Yellow <OPTION
VALUE="purple">Purple

</SELECT>
</FORM>

</BODY>
</HTML>

DOMDOM

J0
34

A more complex example -1

A simple data entry
validation page

18
18

J0
35

A more complex example -2

<HTML>
<HEAD>
<TITLE>Data Form Validation Example</TITLE>

<SCRIPT LANGUAGE="JavaScript1.1" SRC="FormCheck.js"></SCRIPT>

Start of file “FormValidation.html”

Load file “FormCheck.js”,
which contains several JavaScript functions

J0
36

A more complex example -3
function isEmpty(s)
{ return ((s == null) || (s.length == 0))
}

function warnEmpty (theField, s)
{
 var mPrefix = "You did not enter a value into the ";
 var mSuffix = " field. This is a required field. Please enter it now.";
 theField.focus();
 alert(mPrefix + s + mSuffix);
 return false;
}

Check that the string
“s” is not empty

Issue a warning
message

All this is contained in the file “FormCheck.js”

19
19

J0
37

A more complex example -4
function promptEntry (s)
{ window.status = "Please enter a " + s;
}

function validatePersonalInfo(form)
{ return (
 checkString(form.elements["LastName"],sLastName)
)
}

function checkString (theField, s)
{
 if (isEmpty(theField.value)) return warnEmpty (theField, s);
 else return true;
}

Type a message in the status bar

Check that “theField”
is not empty

Validate the form
(should run over all fields
And perform suitable checks)

All this is contained in the file “FormCheck.js”

J0
38

A more complex example -5
<SCRIPT>
var sCompany="Company Name"; var sLastName="Last Name"; var

form="PersonalInfo";

function displayPersonalInfo(form)
{ var outputTable = "<HTML><HEAD><TITLE>Results</TITLE></HEAD>" +
 "<BODY><H1>Data Entered:</H1><TABLE BORDER=1>" +
 "<TR><TD>" + sLastName + "</TD><TD>" + form.elements["LastName"].value +

"</TD></TR>" +
 "<TR><TD>" + sCompany + "</TD><TD>" + form.elements["Company"].value +

"</TD></TR></TABLE><FORM>“ +
 "<INPUT TYPE=\"BUTTON\" NAME=\"Back\" VALUE=\"Back\"

onClick=\"history.back()\"> </FORM></BODY></HTML>"
 document.writeln(outputTable)
 document.close()
 return true
} </SCRIPT>
</HEAD>

Value-printing
function

End of “HEAD” portion of “FormValidation.html”

Global variables

Add a Button to go
back in history

20
20

J0
39

A more complex example -6
<BODY BGCOLOR="#ffffff">
<CENTER><H2>PERSONAL INFORMATION </H2></CENTER>
<P><P><I>Fields marked with an asterisk (*) must be entered.</I>
<FORM NAME="PersonalInfo">
<TABLE>
<TR>
 <TD>* Family Name:</TD>
 <TD><INPUT TYPE="text" NAME="LastName"

onFocus="promptEntry(sLastName)"
onChange="checkString(this,sLastName)" ></TD>

</TR>
<TR>
 <TD>Company Name:</TD>
 <TD><INPUT TYPE="text" NAME="Company"

onFocus="promptEntry(sCompany)"></TD>
</TR>

First Field

Start of “BODY” portion of “FormValidation.html”

Second Field

J0
40

A more complex example -7
<TR>
 <TD>
 <INPUT TYPE="BUTTON" NAME="fakeSubmit" VALUE="Display"

onClick="if (validatePersonalInfo(this.form)) displayPersonalInfo(this.form); ">
 </TD>
 <TD><INPUT TYPE = "reset" VALUE = "Reset">
 </TD>
</TR>
</TABLE>
<P> NOTE: We replace the usual Submit button with a "Display" that acts locally,

by calling some code to display what was typed in.
</FORM>
</BODY>
</HTML>

First Button

End of file “FormValidation.html”

Second Button

21
21

J0
41

Applet

Methods
Same as the public methods
of the Java applet

Properties
Same as the public fields
of the Java applet

“An applet embedded in a Web page”

DOMDOM

J0
42

LiveConnect

A two-faced, (Netscape-only) technology to let JavaScript
interact with Java, so that:

• A JavaScript script can control and coordinate Java
applets, and let Java applets interact with plugins.

• A Java Applet can execute JavaScript code.

22
22

J0
43

Server-Side JavaScriptServer-Side JavaScript

Not discussed here!
A substitute for CGI.
Server-dependent technology to process the
Web page before passing it to the client.
(The Netscape SSJS object model is different from the

Microsoft ASP object model, although JavaScript can
be used as SSLanguage for ASP)

See
http://developer.netscape.com/viewsource/husted_js/husted_js.html

J0
44

References
Standard ECMA-262 ECMAScript Language Specification:
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM ()

Tutorials and references:
• http://developer.netscape.com/tech/javascript/javascript.html
• http://www.sauronsoftware.it/jsreference

Books:
• D.Flanagan “Javascript. The definitive guide” O’Reilly.
• D.Goodman “Dynamic HTML. The definitive reference” O’Reilly

23
23

J0
45

Java-JavaScript interaction: JSObject
JSObject allows Java to manipulate objects that are defined in JavaScript.

Values passed from Java to JavaScript are converted as follows:
JSObject is converted to the original JavaScript object.
Any other Java object is converted to a JavaScript wrapper, which can be
used to access methods and fields of the Java object.
Converting this wrapper to a string will call the toString method on the
original object, converting to a number will call the floatValue method if
possible and fail otherwise.
Converting to a boolean will try to call the booleanValue method in the
same way.
Java arrays are wrapped with a JavaScript object that understands
array.length and array[index].
A Java boolean is converted to a JavaScript boolean.
Java byte, char, short, int, long, float, and double are converted to
JavaScript numbers.

Note If you call a Java method from JavaScript, this conversion happens
automatically--you can pass in "int" argument and it works.

J0
46

Java-JavaScript interaction: JSObject
Values passed from JavaScript to Java are converted as follows:

Objects that are wrappers around Java objects are unwrapped.

Other objects are wrapped with a JSObject.

Strings, numbers, and booleans are converted to String, Float, and
Boolean objects respectively.

Examples
(String) window.getMember("name")
(JSObject) window.getMember("document")

24
24

J0
47

Java-JavaScript interaction: JSObject
The netscape.javascript.JSObject class has the following methods:

Method Description
Call Calls a JavaScript method
Eval Evaluates a JavaScript expression
getMember Retrieves a named member of a JavaScript object
getSlot Retrieves an indexed member of a JavaScript object
removeMember Removes a named member of a JavaScript object
setMember Sets a named member of a JavaScript object
setSlot Sets an indexed member of a JavaScript object
toString Converts a JSObject to a string

The netscape.javascript.JSObject class has the following static methods:

getWindow Gets a JSObject for the window containing the given applet

J0
48

Java-JavaScript interaction: JavaScript
side

<HTML>
 <head>
 <script>
 function g(x){return x+x}
 function f(){return "Called f()";}
 </script>
 </head>
 <body>
 <script type="text/JavaScript">
 <!-- //hide script from old browsers
 document.write("<h2>JavaScript is enabled.</h2>")
// end hiding contents from old browsers -->
</script>
<noscript><h2>JavaScript is not enabled, or your browser has
restricted this file from showing active
content.</h2></noscript>

25
25

J0
49

Java-JavaScript interaction: JavaScript
side

<script>
 <!-- //hide script from old browsers
var jEnabled = navigator.javaEnabled();
if (jEnabled){
 document.write("<h2>JAVA is enabled.</h2>")
}else{
 document.write("<h2>JAVA is <i>NOT</i> enabled.</h2>")
}
// end hiding contents from old browsers -->
</script>

<APPLET code="javascript.MyApplet.class" name="app"
codebase="classes/" align="baseline"
 width="200" height="200"
MAYSCRIPT>
<PARAM NAME="param" VALUE="1">
 If your browser is blocking the content, please click on the
bar above.
</APPLET>

J0
50

Java-JavaScript interaction: JavaScript
side

 <script language="Javascript">
 document.write(f());
 </script>
 <script language="Javascript">
 document.write(app.comment);
 app.r=255;
 document.write(app.square("3");
 </script>
 <form>
 <input name="ChangeColorButton" value="Change color"
type="button"
onclick="app.r=(app.r+100)%256;app.repaint()";/>
 </form>
 <form>
 <input title="writeButton" value="write on console"
type="button" onclick='java.lang.System.out.println("a java
message");';/>
 </form>
 </body>
 </html>

26
26

J0
51

Java-JavaScript interaction: applet
side

package javascript;
import netscape.javascript.*;
import java.applet.*;
import java.awt.*;
public class MyApplet extends Applet {
 private JSObject mainWindow;
 private JSObject pageDoc;
 private JSObject location;

 private String s;
 public String comment="instanceVarContent";
 public void init() {
 System.out.println("initing");
 mainWindow = JSObject.getWindow(this);
 pageDoc = (JSObject) mainWindow.getMember("document");
 location = (JSObject) mainWindow.getMember("location");
 s = (String) location.getMember("href"); // document.location.href
 }

J0
52

Java-JavaScript interaction: applet
side

 public int r=0;
 public int g=255;
 public int b=0;

 public void start(){
 s=(String)mainWindow.call("f",null);
 String[] stringArgs = new String[1];
 stringArgs[0] = "5";
 s=(String)mainWindow.call("g", stringArgs);
 System.out.println (" Calling g returned "+s);
 }

 public void paint(Graphics gra) {
 if (s==null) s="NULL";
 gra.setColor(new Color(r,g,b));
 Dimension d=this.getSize();
 gra.fillRect(0,0,d.width,d.height);
 gra.setColor(new Color(0,0,0));
 gra.drawString("VERSION 1",80,80);
 gra.drawString(s,30,30);
 }

27
27

J0
53

Java-JavaScript interaction: applet
side

 void changeColor(String s) {
 int x=Integer.parseInt(s);
 r=x;
 this.repaint();
 }

 public String square(String sx) {
 int x=Integer.parseInt(sx);
 return new Integer(x*x).toString();
 }

}

