Y
Lo

String account|D
string ownerMame
double balance

Bank Account O I t M

Object-Relational Mapping
is NOT serialization!

You can perform queries on each field!

.

Database API A
Yuch as JDBEC or
s0L)

Account Class

String accountlD
String ownarMName
double balance

Account Instance

uill ID=1
— accountlD | ownerName = accountiLt = .
- T T = | ownerMName = Ray Combs
_____————- L —— ‘_"__é_: balance = 1000
| <=1 RayCombs <= 1000 <=1
Bob Barker | 500
3 Maonty Haul 2750

Bank Account

Table

Relational Database

Account Table

Relational Database

The Sun Java Data Objects (JDO) specification, defines
portable APIs to a persistence layer that is conceptually
neutral to the database technology used to support it. It
can thus be implemented by vendors of relational and
object-oriented databases.

The new Java Persistence specification finally defines a
standardized objec-trelational mapping and requires
compliant products to implement it. There is now a broad
iIndustry consensus on a portable programming model
for persistent Java objects.

Entities

Entities have a client-visible, persistent identity
(the primary key) that is distinct from their object
reference.

Entities have persistent, client-visible sfafe.
Entities are not remotely accessible.

An entity’s /ifefime may be completely
independent of an application’s lifetime.

Entities can be used in both Java EE and J2SE
environments

Entities - example

This demo entity represents a Bank Account.
The entity is not a remote object and can only

package examples.entity.intro; be accessed locally by clients. However, it is
import java.io.Serializable; made serializable so that instances can be
import javax.persistence.Entity; passed by value to remote clients for local
import javax.persistence.Id; inspection. Access to persistent state is by
@Entity direct field access.

public class Account implements Serializable ({
// The account number is the primary key
@Id
public int accountNumber;
public int balance;
private String ownerName;
String getOwnerName () {return ownerName;}
void setOwnerName (String s) {ownerName=s;}

/** Entities must have a public no-arg constructor */
public Account() ({
// our own simple primary key generation
accountNumber = (int) System.nanoTime() ;

Entities - example

public void deposit(int amount) {
balance += amount;
}
public int withdraw(int amount) ({
if (amount > balance) {
return O;
} else {
balance -= amount;
return amount;

}

The entity can expose business methods, such
as a method to decrease a bank account
balance, to manipulate or access that data. Like
a session bean class, an entity class can also
declare some standard callback methods or a
callback listener class. The persistence provider
will call these methods appropriately to manage
the entity.

Access to the entity’s persistent state is by direct
field access. An entity’s state can also be
accessed using JavaBean-style set and get
methods.

The persistence provider can determine which
access style is used by looking at how
annotations are applied. In Source 6.1, the @Id
annotation is applied to a field, so we have field
access.

Access to the Entity

package examples.entity.intro;
import java.util.List;
import javax.ejb.Stateless;
import javax.ejb.Remote;
import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
import javax.persistence.Query;
@Stateless
@Remote (Bank.class)
public class BankBean implements Bank ({
@PersistenceContext
private EntityManager manager;
public List<Account> listAccounts() {
Query query = manager.createQuery ("SELECT a FROM Account a");
return query.getResultList() ;
}
public Account openAccount (String ownerName) ({
Account account = new Account() ;
account.ownerName = ownerName;
manager .persist (account) ;
return account;

Access to the Entity

public int getBalance (int accountNumber) {
Account account = manager.find(Account.class, accountNumber) ;
return account.balance;

}

public void deposit(int accountNumber, int amount) ({
Account account = manager.find(Account.class, accountNumber) ;
account.deposit (amount) ;

}

public int withdraw(int accountNumber, int amount) ({
Account account = manager.find(Account.class, accountNumber) ;
return account.withdraw (amount) ;

}

public void close(int accountNumber) ({
Account account = manager.find(Account.class, accountNumber) ;
manager .remove (account) ;

Persistence.xml

<?xml version="1.0" encoding="UTF-8"7>

<persistence xmlns="http://java.sun.com/xml/ns/persistence’>
<persistence-unit name="intro"/>

</persistence>

* A persistence unit is defined in a special descriptor file,
the persistence.xml file, which is simply added to the
META-INF directory of an arbitrary archive, such as an
Ejb-jar, .ear, or .war file, or in a plain .jar file.

