
ORM
Object-Relational Mapping

is NOT serialization!

You can perform queries on each field!

The Sun Java Data Objects (JDO) specification, defines
portable APIs to a persistence layer that is conceptually
neutral to the database technology used to support it. It
can thus be implemented by vendors of relational and
object-oriented databases.

The new Java Persistence specification finally defines a
standardized objec-trelational mapping and requires
compliant products to implement it. There is now a broad
industry consensus on a portable programming model
for persistent Java objects.

Entities

• Entities have a client-visible, persistent identity
(the primary key) that is distinct from their object
reference.

• Entities have persistent, client-visible state.
• Entities are not remotely accessible.
• An entity’s lifetime may be completely

independent of an application’s lifetime.
• Entities can be used in both Java EE and J2SE

environments

Entities - example
package examples.entity.intro;
import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.Id;
@Entity
public class Account implements Serializable {

// The account number is the primary key
@Id
public int accountNumber;
public int balance;
private String ownerName;
String getOwnerName() {return ownerName;}
void setOwnerName(String s) {ownerName=s;}

/** Entities must have a public no-arg constructor */
public Account() {

// our own simple primary key generation
accountNumber = (int) System.nanoTime();

}

 This demo entity represents a Bank Account.
The entity is not a remote object and can only
be accessed locally by clients. However, it is
made serializable so that instances can be
passed by value to remote clients for local
inspection. Access to persistent state is by
direct field access.

Entities - example
public void deposit(int amount) {

balance += amount;
}
public int withdraw(int amount) {

if (amount > balance) {
return 0;

} else {
balance -= amount;
return amount;

}
}

} The entity can expose business methods, such
as a method to decrease a bank account
balance, to manipulate or access that data. Like
a session bean class, an entity class can also
declare some standard callback methods or a
callback listener class. The persistence provider
will call these methods appropriately to manage
the entity.

Access to the entity’s persistent state is by direct
field access. An entity’s state can also be
accessed using JavaBean-style set and get
methods.

The persistence provider can determine which
access style is used by looking at how
annotations are applied. In Source 6.1, the @Id
annotation is applied to a field, so we have field
access.

Access to the Entity
package examples.entity.intro;
import java.util.List;
import javax.ejb.Stateless;
import javax.ejb.Remote;
import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
import javax.persistence.Query;
@Stateless
@Remote(Bank.class)
public class BankBean implements Bank {

@PersistenceContext
private EntityManager manager;
public List<Account> listAccounts() {

Query query = manager.createQuery ("SELECT a FROM Account a");
return query.getResultList();

}
public Account openAccount(String ownerName) {

Account account = new Account();
account.ownerName = ownerName;
manager.persist(account);
return account;

}

Access to the Entity
public int getBalance(int accountNumber) {

Account account = manager.find(Account.class, accountNumber);
return account.balance;

}
public void deposit(int accountNumber, int amount) {

Account account = manager.find(Account.class, accountNumber);
account.deposit(amount);

}
public int withdraw(int accountNumber, int amount) {

Account account = manager.find(Account.class, accountNumber);
return account.withdraw(amount);

}
public void close(int accountNumber) {

Account account = manager.find(Account.class, accountNumber);
manager.remove(account);

}
}

Persistence.xml
<?xml version=”1.0” encoding=”UTF-8”?>
<persistence xmlns=”http://java.sun.com/xml/ns/persistence”>

<persistence-unit name=”intro”/>
</persistence>

• A persistence unit is defined in a special descriptor file,
the persistence.xml file, which is simply added to the
META-INF directory of an arbitrary archive, such as an
Ejb-jar, .ear, or .war file, or in a plain .jar file.

