Introduction to Session beans

EJB

Architecture

Client Tier |We|> Service Client| | HTML Client |
[soapmTTe| | HTTP]
s 2
Messaging C++ CORBA Java Application
Client Client Client Serviet ISP
[coreaiop| [rmreiop | [RMEIOP | [RMIIOP |
________________ S R (R SR
EJB Tier
A y ¥
Message-Driven
‘ Bean ‘ Session Bean ‘ Session Bean

l l \..‘.......\..\ ~—a l

Session Bean Entity Entity

Stateless session Beans

A stateless session bean does not maintain a
conversational state for a particular client.

When a client invokes the method of a
stateless bean, the bean's instance wvariables
may contain a state, but only for the
duration of the invocation. When the method
is finished, the state is no longer retained.

Stateless vs. stateful session Beans

All instances of a stateless bean are
equivalent, allowing the EJB container to
assign an instance to any client.

=> Stateless session beans
, and offer
for applications that require

large numbers of clients.

Typically, an application requires fewer stateless session
beans than stateful session beans to support the same number
of clients.

EJB ingredients

Interfaces: The remote and home interfaces are
required for remote access. For local access,
the local and local home interfaces are
required.

Enterprise bean class: the methods
defined in the interfaces.

Helper classes: Other classes needed by the
enterprise bean class, such as exception and

utility classes.

Deployment descriptor: see later

Remote Interface

/**

This is the HelloBean remote interface.

This interface is what clients operate on when
they interact with EJB objects. The container
vendor will implement this interface; the
implemented object is the EJB object, which
delegates invocations to the actual bean.

* ok ok Ok F * *

*/
public interface Hello extends javax.ejb.EJBObject
{

J*%
* The one method - hello - returns a greeting to the client.
*/

public String hello() throws java.rmi.RemoteException;

}

Must throw
RemoteException

Home Interface

/**

* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server’s tools - the

* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.

*

* One create() method is in this Home Interface, which

*

corresponds to the ejbCreate() method in HelloBean.

*/

public interface HelloHome extends javax.ejb.EJBHome

{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.

*/

Hello create() throws java.rmi.RemoteException,
javax.ejb.CreateException;

Bean Implementation

/**

* Demonstration stateless session bean.

*/

public class HelloBean implements javax.ejb.SessionBean ({
private javax.ejb.SessionContext ctx;
//
// EJB-required methods
//
public void ejbCreate() { System.out.println(“ejbCreate()”)
public void ejbRemove () { System.out.println(“ejbRemove()”) ;

}
}

public void ejbActivate() { System.out.println(“ejbActivate()”);}

public void ejbPassivate() {System.out.println(“ejbPassivate
public void setSessionContext(javax.ejb.SessionContext ctx)
this.ctx = ctx; }
//
// Business methods
//
public String hello() {
System.out.println(“hello()”);
return “Hello, World!'”;

07):}
{

Client Implementation

import javax.naming.Context;

import javax.naming.InitialContext;

import java.util.Properties;

/**

* This class is an example of client code that invokes

* methods on a simple stateless session bean.

*/

public class HelloClient {

public static void main(String[] args) throws Exception {

/*
* Setup properties for JNDI initialization.
* These properties will be read in from the command line.
*/
Properties props = System.getProperties();
/*
* Obtain the JNDI initial context.
* The initial context is a starting point for
* connecting to a JNDI tree. We choose our JNDI
* driver, the network location of the server, etc.
* by passing in the environment properties.
*/

Context ctx = new InitialContext (props);

Client Implementation

/* Get a reference to the home object - the

* factory for Hello EJB Objects

*/

Object obj = ctx.lookup (“HelloHome”) ;

/* Home objects are RMI-IIOP objects, and so they must be cast
* into RMI-IIOP objects using a special RMI-IIOP cast.
*/

HelloHome home = (HelloHome)
javax.rmi.PortableRemoteObject.narrow(obj, HelloHome.class) ;
/* Use the factory to create the Hello EJB Object

*/

Hello hello = home.create();

/*Call the hello() method on the EJB object. The

* EJB object will delegate the call to the bean,

* receive the result, and return it to us.

* We then print the result to the screen.

*/

System.out.println(hello.hello()) ;

/*

* Done with EJB Object, so remove it.

* The container will destroy the EJB object.

*/

hello.remove () ;

The logical architecture

Client Directory App server (container)

Machine Machine Machine

Client |NamingService| | Homelnterface | | Pool | | Istanza |
Find thd

Homelinterface

Give ¢ an instance
Create or fetch

An instance
< ...
‘Meth) 0 ‘
Deployment Descriptor
Deployment descriptor: An file that

specifies information about the bean such as
its transaction attributes.

* You package the files in the preceding list
into an , the module that stores
the enterprise bean.

* To assemble a J2EE application, you package
one or more modules--such as EJB JAR files--
into an , the archive file that holds
the application.

ejb-jar.xml

<?xml version="1.0"” encoding="UTF-8"7?>
<ejb-jar
xmlns="http://java.sun.com/xml/ns/j2ee”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_2 1.xsd”
version="2.1">
<enterprise-beans>
<session>
<ejb-name>HelloWorldEJB</ejb-name>
<home>examples.ejb2l.HelloHome</home>
<remote>examples.ejb2l.Hello</remote>
<local-home>examples.ejb2l.HelloLocalHome</local-home>
<local>examples.ejb2l.HelloLocal</local>
<ejb-class>examples.ejb2l.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>

</ejb-jar>

ejb-jar.xml (continued)

<assembly-descriptor>
<security-role>
<description> This role represents everyone who is allowed
full access to the HelloWorldEJB. </description>
<role-name>everyone</role-name>
</security-role>
<method-permission>
<role-name>everyone</role-name>
<method>
<ejb-name>HelloWorldEJB</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
<container-transaction>
<method>
<ejb-name>HelloWorldEJB</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

The file structure

= =) build
= I classes

=] D) com

Client

() cabin
.class

) clients

) jndi
B IS sre i jndi.properties
B I2) main

=l] com

package

=] |2 titan

() cabin

() dlients ->t
= I2) resources
il META-INF

.Jjava

—_— [. .
ejb-jar.xml

jboss.xml

Introduction to Session beans

LOCAL BEANS

Local Interface

/**

This is the HelloBean local interface.

*
*
* This interface is what local clients operate

* on when they interact with EJB local objects.

* The container vendor will implement this

* interface; the implemented object is the

* EJB local object, which delegates invocations

* to the actual bean.

*/

public interface HelloLocal extends javax.ejb.EJBLocalObject
{

/**

* The one method - hello - returns a greeting to the client.

*/

public String hello();
} May throw
EJBException
instead of
RemoteException

Local Home Interface

/**

* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server’s tools - the

* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.

*

* One create() method is in this Home Interface, which

*

corresponds to the ejbCreate() method in HelloBean.

*/

public interface HelloLocalHome extends javax.ejb.EJBLocalHome
{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.

*/

Hellolocal create() throws javax.ejb.CreateException;

}

Local Client

Object ref = jndiContext.lookup(“HelloHome");
HelloHome home = (HelloHome)
PortableRemoteObject.narrow(ref,HelloHome.class);

HelloHome cabin_1 = home.create();

HelloLocalHome home = (HelloLocalHome)
jndiContext.lookup(“java:comp/env/ejb/ HelloLocalHome ");

HelloLocalHome cabin_1 = home.create();

We looked up a bean in java:comp/env/ejb.

This is the JNDI location that the EJB specification recommends
(but does not

require) you put beans that are referenced from other beans.

Hierarchy of HelloWorld

<<interface-= <<interface-=
Java.rmi.Remote jJava.io.Serializable

Comas with Java 2 platform

4 B
/ A} =<interface->
javax.ejb EnterpriseBean
z<interfacas:= <<interface-= <<interfaces= z<interface==
javax.e|b.E|BELocalObject| | Javax.ejb.EJBObject Javax.ejb.EJBHome javax.e|b.E|BELocalHome

z<interfaca==
Javax.ejb_SessionBean

Comes with EJB distribution

=<interface-= <=interface-> =<interface-= <<interface== Hello World Bean
Hello World Hello World Hello World Hello World Implementation
Local Interface Remote Interface Home Interface Local Home Interface Class

Supplied by Bean provider (we will write)

EJB Local Object

EJB Objact

Hello World Hello World Hello World

Home Object

Hello World
Local Home Object

10

Introduction to Session beans

EJB 3.0

Remote Interface

EJB 2.1

public interface Hello extends javax.ejb.EJBObject
{
J*%
* The one method - hello - returns a greeting to the client.
*/
public String hello() throws java.rmi.RemoteException;

}

EJB 3.0

package examples.session.stateless;
public interface Hello {

public String hello(); business

} interface

11

Bean Implementation

public class HelloBean implements javax.ejb.SessionBean ({
private javax.ejb.SessionContext ctx;
public void ejbCreate() { System.out.println(“ejbCreate()”); }
public void ejbRemove () { System.out.println(“ejbRemove()”); }
public void ejbActivate() { System.out.println(“ejbActivate()”);}
public void ejbPassivate() {System.out.println(“ejbPassivate()”);}
public void setSessionContext(javax.ejb.SessionContext ctx) {
this.ctx = ctx; }
public String hello() {
System.out.println(“hello()”); return “Hello, World!”;

}
}
EJB 3.0
package examples.session.stateless;
import javax.ejb.Remote; import javax.ejb.Stateless;

@Stateless enterprise
@Remote (Hello.class) bean
public class HelloBean implements Hello { instance

public String hello() {
System.out.println(“hello()”); return “Hello, World!'”;
}

The remote client — 3.0

package examples.session.stateless;
import javax.naming.Context;
import javax.naming.InitialContext;
public class HelloClient {
public static void main(String[] args) throws Exception ({
/*
* Obtain the JNDI initial context.
*
* The initial context is a starting point for
* connecting to a JNDI tree.

*/

Context ctx = new InitialContext();

Hello hello = (Hello)

ctx.lookup (“examples.session.stateless.Hello”);
/*

* Call the hello() method on the bean.
* We then print the result to the screen.
*/

System.out.println(hello.hello()) ;

12

ejb-jar.xml — 3.0

<?xml version="”1.0"” encoding="UTF-8" ?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchemainstance”
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_3 0.xsd”
version="3.0">

<enterprise-beans>

</enterprise-beans>

</ejb-jar>

Keep in mind these terms...

The enterprise bean instance is a plain old Java object instance of an
enterprise bean class. It contains business method implementations of the
methods defined in the remote/local business interface, for session beans.

The business interface is a plain old Java interface that enumerates the
business methods exposed by the enterprise bean. Depending on the
client view supported by the bean, the business interface can be further
classified into a local business interface or a remote business interface.

The deployment descriptor is an XML file that specifies the middleware
requirements for your bean. You use the deployment descriptor to inform
the container about the services you need for the bean, such as
transaction services, security, and so on. Alternatively, you can specify the
n?iddleware”requirements using deployment annotations within the bean
class as well.

13

Keep in mind these terms...

« The Ejb-jar file is the packaging unit for an enterprise bean,

consisting of all the above artifacts. An EJB 3.0 Ejb-jar file can
also consist of the old-style beans, if your application uses
components defined using pre—EJB 3.0 technologies.

The vendor-specific deployment descriptor lets you
specify your bean’s needs for proprietary container services
such as clustering, load balancing, and so on. Avendor can
alternatively provide deployment metadata for these services,
which, like standard metadata, can be used within the bean
class to specify the configuration for these services. The
vendor-specific deployment descriptor’s definition changes
from vendor to vendor.

-
3.0 Packaging
(AN EJB Container JVM
Standard
Bean Deployment
Class Descriptor

(if any)
EJB Jar File

Remote
Business
Interface

(if any)

Jar File
Generator

Local Vendor-
Business Specific
Interface Deployment

(if any) Descriptor

14

3.0 Packaging

B EJB Container VM

Standard
Deployment
Descriptor
(if any)

Remote
Business Jar File ;
Interface Generator EIE Ll
(if any)
—//
///
AN

Vendor-
Business Specific
Interface Deployment
(if any) Descriptor

3.0 Lifecycle

Local Client

EJB Container JVM

1.b: Calla

method
&.b: Retum from
methed call
Implicit Middleware
Local Services
Client View
» Lifecycle managment

B
Interface « Transaction management
3: Call contalner r NS

Remote
Client View oS ¥ 7
2: Invoke specific APIs that mu;ci services
6.a: Retun from corresponding pmflf.. Implicit more
methad call mathad cn
the wrapper before Invacation
class 5: Call contalner
specific APIs that
provide implicit
mikdleware
aftar Invocation

4: Invokes the carresponding
business mathod on bean class

I

|

1

1

|

I

: Container Generated
\ Wrapper Classss

|

1

1

I

I

! Enterprise Bean
: Class

15

Remote
Interface

Passivation

2: pick the least
Tecently used bean
Business 3: call Bean

Interface @PrePassivate Instance
4: serialize
bean state

Other
Bean
Instances

a1eE ueag
panjeuas alok

e A typical bean passivation scenario.
The client has invoked a method on
a business interface reference that
does not have a bean instance tied
to it in memory. The container’s
pool size of bean instances been
reached. Thus the container needs
to passivate a bean before handling
this client’s request.

Remote
Interface

Activation

3: reconstruct bean

Business Bean

4 call
Interface @PostActivated Instance
5: ke business method

Other
Bean
Instances

— A typical just-in-time statefule session
bean activation scenario. The client has
— invoked a method on a business
interface reference whose stateful bean
had been passivated.

16

Managing the lifecycle — 3.0

@Stateful
public class MyBean {
@PrePassivate
public void passivate() {
<close socket connections, etc...>

}

@PostActivate
public void activate() {
<open socket connections, etc...>

}

JBOSS and NetBeans

Download Jboss 4.2.1
http://labs.jboss.com/jbossas/downloads/

Download Netbeans 6.0 beta
http://www.netbeans.org/community/releases/60/

17

Setting the JNDI properties

private HelloBeanRemote lookupHelloBeanBean() {
Properties props= new Properties();
props.setProperty("java.naming.factory.initial",
"org.jnp.interfaces.NamingContextFactory");
props.setProperty("java.naming.provider.url",
"inp://localhost:1099");
props.setProperty("java.naming.factory.url.pkgs",
"org.jboss.naming:org.jnp.interfaces");
try {
Context ¢ = new InitialContext(props);
/Ireturn (HelloBeanRemote) c.lookup("java:comp/env/HelloBeanBean");
return (HelloBeanRemote) c.lookup("EnterpriseDemo/HelloBeanBean/remote");
} catch (NamingException ne) {

-
}

JBOSS: see the JNDI names

http://localhost:8080/imx-console/HtmIAdaptor

Click on Service=JNDI

Choose List

18

