
1

1

Basic Elements

JSP

For a Tutorial, see:
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro.html

<html>

<body>

<% out.println(“Hello World”); %>

</body>

</html>

Simple.jsp

2

2

JSP Lifecycle

Browser Servlet generato

Servlet compilato

Pagina JSP

Server Web

Syntactic elements:

<%@ directives %>

<%! declarations %>

<% scriptlets %>

<%= expressions %>

<jsp:actions/>

<%-- Comment --%>

JSP nuts and bolts

Implicit Objects:

•request

•response

•pageContext

•session

•application

•out

•config

•page

3

3

Syntactic elements:

<%@ directives %> ���� Interaction with the CONTAINER

<%! declarations %> ���� In the initialization of the JSP

<% scriptlets %> ���� In the service method

<%= expressions %> ���� In the service method

<jsp:actions/>

JSP nuts and bolts

A scriptlet is a block of Java code executed during the
request-processing time.

In Tomcat all the scriptlets gets put into the service()
method of the servlet. They are therefore processed for
every request that the servlet receives.

Scriptlets

4

4

Examples :

<% z=z+1; %>

<%

// Get the Employee's Name from the request

out.println("Employee: " +

request.getParameter("employee"));

// Get the Employee's Title from the request

out.println("
Title: " +

request.getParameter("title"));

%>

Scriptlet

An expression is a shorthand notation that sends
the evaluated Java expression back to the client
(in the form of a String).

Examples :

<%= getName() %>

<%@ page import=java.util.* %>

Sono le <%= new Date().toString(); %>

Expressions

5

5

<html><body>

<%! String nome=“pippo” %>

<%! public String getName() {return nome;} %>

<H1>

Buongiorno

<%= getName() %>

</H1>

</body></html>

Expressions

A declaration is a block of Java code used to:

define class-wide variables and methods in the generated
servlet.

They are initialized when the JSP page is initialized.

<%! DECLARATION %>

Examples:
<%! String nome=“pippo”; %>

<%! public String getName() {return nome;} %>

Declarations

6

6

A directive is used as a message mechanism to:

pass information from the JSP code to the container

Main directives:

page

include (for including other STATIC resources at
compilation time)

taglib (for including custom tag libraries)

Directives

<%@ DIRECTIVE {attributo=valore} %>

main attributes:

<%@ page language=java session=true %>

<%@ page import=java.awt.*,java.util.* %>

<%@ page isThreadSafe=false %>

<%@ page errorPage=URL %>

<%@ page isErrorPage=true %>

Directives

7

7

Standard action are tags that affect the runtime behavior of
the JSP and the response sent back to the client.

<jsp:include page=“URL” />

For including STATIC or DYNAMIC resources at request
time

<jsp:forward page=“URL” />

Standard actions

A bean is a Java class that:
� Provides a public no-argument constructor
� Implements java.io.Serializable
� Follows JavaBeans design patterns

� Has Set/get methods for properties
� Has Add/remove methods for events

�Java event model (as introduced by JDK 1.1)

� Is thread safe/security conscious
� Can run in an applet, application, servlet, ...

public class SimpleBean implements Serializable {
private int counter;
SimpleBean() {counter=0;}
int getCounter() {return counter;}
void setCounter(int c) {counter=c;}

}

See
http://java.sun.com/developer/onlineTraining/Beans/JBeansAPI/shortcourse.html

What is a Java bean?

8

8

<jsp:useBean id=“name” class=“fully_qualified_pathname”

scope=“{page|request|session|application}” />

<jsp:setProperty name=“nome” property=“value” />

<jsp:getProperty name=“nome” property=“value” />

Standard actions involving beans

When should I use a JSP <%@include@%> directive, and

when should I use a <jsp:include> action?

A JSP <%@include@%> directive (for example, <%@
include file="myfile.jsp" @%>) includes literal text "as
is" in the JSP page and is not intended for use with
content that changes at runtime. The include occurs only
when the servlet implementing the JSP page is being built
and compiled.

The <jsp:include> action allows you to include either static
or dynamic content in the JSP page. Static pages are
included just as if the <%@include@%> directive had
been used. Dynamic included files, though, act on the
given request and return results that are included in the
JSP page. The include occurs each time the JSP page is
served.

See also

http://java.sun.com/blueprints/qanda/web_tier/index.html#directive

<%@include@%> or <jsp:include> ?

9

9

When should I use JSP-style comments instead of HTML-style
comments?

Always use JSP-style comments unless you specifically want the
comments to appear in the HTML that results from serving a JSP
page.

JSP-style comments are converted by the JSP page engine into
Java comments in the source code of the servlet that
implements the JSP page. Therefore, JSP-style comments don't
appear in the output produced by the JSP page when it runs.
HTML-style comments pass through the JSP page engine
unmodified. They appear in the HTML source passed to the
requesting client.

JSP-style comments do not increase the size of the document that
results from the JSP page, but are useful to enhance the
readability of the JSP page source, and to simplify debugging
the servlet generated from the JSP page.

(taken from:

http://java.sun.com/blueprints/qanda/web_tier/index.html#comments

<%-- Comment --%> or <!-- Comment --> ?

out Writer

request HttpServletRequest

response HttpServletResponse

session HttpSession

page this nel Servlet

application servlet.getServletContext

area condivisa tra i servlet

config ServletConfig

exception solo nella errorPage

pageContext sorgente degli oggetti, raramente usato

Predefined Objects

10

10

<%@ page errorPage="errorpage.jsp" %>

<html>

<head>

<title>UseRequest</title>

</head>

<body>

<%

// Get the User's Name from the request

out.println("Hello: " + request.getParameter("user") + "");

%>

</body>

</html>

request

<%@ page errorPage="errorpage.jsp" %>
<html> <head> <title>UseSession</title> </head> <body>

<%
// Try and get the current count from the session
Integer count = (Integer)session.getAttribute("COUNT");
// If COUNT is not found, create it and add it to the session
if (count == null) {
count = new Integer(1);
session.setAttribute("COUNT", count);

} else {
count = new Integer(count.intValue() + 1);
session.setAttribute("COUNT", count);

}
// Get the User's Name from the request
out.println("Hello you have visited this site: " + count + " times. ");

%>
</body> </html>

session

11

11

Common patterns

JSP

SERVER

Common JSP patterns

JSP

or

Servlet

Enterprise

JavaBeans

Page-centric (client-server)

DB

CLIENT

CLIENT

12

12

Common JSP patterns

JSP
Business

Processing

Page View

request

response

Page-centric 1 (client-server)

Common JSP patterns

JSP
Business

Processing

Page View with Bean

request

response

Worker

Bean

Page-centric 2 (client-server)

13

13

Common JSP patterns

Mediating
JSP

Presentation JSP

Dispatcher (n-tier)

Worker bean

Presentation JSP Worker bean

Presentation JSP

request

response

service

service

service

Business
Processing

Mediator - View

WebApps
(Tomcat configuration)

14

14

JSP pages

To let Tomcat serve JSP pages, we follow the same
procedure that we described for static pages.

In the myApp folder we can depost the JSP files.

On our Tomcat server, the URL for the hello.jsp file
becomes:

http://machine/port/myApp/hello.jsp

The WEB-INF directory still contains the same web.xml

file as in the static case must be provided.

To actually see the webapp, you might have to restart
Tomcat (with older Tomcat versions)

myApp

hello.jspWEB-INF

webapps

web.xml

Tag Extension

JSP

http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html

15

15

Ideally, JSP pages should contain no code written in the
Java programming language (that is, no expressions or
scriptlets). Anything a JSP page needs to do with Java
code can be done from a

custom tag

� Separation of form and function.

� Separation of developer skill sets and activities.

� Code reusability.

� Clarified system design.

JSP custom tag

<%@ taglib uri="/hello" prefix="example" %>

<HTML><HEAD><TITLE>First custom tag</TITLE></HEAD>

<BODY>

This is static output

<p />

<i><example:hello>HELLO THERE</example:hello></i>

This is static output

</BODY>

</HTML>

a JSP custom tag

hello.doStartTag()

hello.doEndTag()

16

16

package jsptags;

import java.io.IOException;

import java.util.Date;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

public class HelloTag extends TagSupport {

public int doStartTag() throws JspTagException {

try {

pageContext.getOut().write("Start tag found here
");

} catch (IOException e) {

throw new JspTagException("Fatal error: could not write to JSP out");

}

return EVAL_BODY_INCLUDE; // return SKIP_BODY;

}

a JSP custom tag

…

public class HelloTag extends TagSupport {

…

public int doEndTag() throws JspTagException {

try {

pageContext.getOut().write("End tag found
");

} catch (IOException e) {

throw new JspTagException("Fatal error: could not write to JSP out");

}

return EVAL_PAGE; // return SKIP_PAGE;

}

}

a JSP custom tag

17

17

Javax.servlet.jsp.tagext.Tag interface

TagPagina JSP

setPageContext(pageContext)

setParent(enclosingTag)

setAttribute1(pageContext)

doStartTag()

doEndTag()

release()

Class Diagram

Tag

doStart(Tag)

doEnd(Tag)

getParent()

release()

setPageContent()

setParent()

<<Interface>>

BodyTag

doAfterBody()

doInitBody()

setBodyContent()

<<Interface>>

TagSupport

<stat ic> findAncestorWithClass()

BodyTagSupport

getBodyContent()

getPreviousOut()

YourOwnBodyTag

YourOwnBodyTag

API

A BodyTag can
manipulate its body,
using its BodyContent
object, while a normal
Tag cannot.
BodyTags are useful
when you want to use
or transform the contents

of the tag.

18

18

<%@ taglib uri="/hello" prefix="example" %>

<HTML><HEAD><TITLE>First custom tag</TITLE></HEAD>

<BODY>

This is static output

<p />

<i><example:hello>HELLO THERE</example:hello></i>

This is static output

</BODY>

</HTML>

a JSP custom tag

hello.doInitBody()

hello.doEndTag()

hello.doStartTag()

hello.doAfterBody()

package jsptags;

…

public class HelloTag extends BodyTagSupport {

public int doStartTag() throws JspTagException {

…

}

public void doInitBody() throws JspTagException {

try {

pageContext.getOut().write("Init Body
");

} catch (IOException e) {

throw new JspTagException("Fatal error: could not write to JSP out");

}

}

a JSP custom tag

19

19

public int doAfterBody() throws JspTagException {

try {

pageContext.getOut().write("After Body
");

} catch (IOException e) {

throw new JspTagException("Fatal error: could not write to JSP out");

}

return EVAL_BODY_TAG; // return SKIP_BODY;

} */

public int doEndTag() throws JspTagException {

…

}

}

a JSP custom tag

Javax.servlet.jsp.tagext.BodyTag interface

TagPagina JSP
setPageContext(pageContext)

setParent(enclosingTag)

setAttribute1()

doStartTag()

setBodyContent(out)

release()

PageContext

pushBody()

doInitBody()

doEndTag()

doAfterBody()

popBody()

20

20

import java.io.IOException; import javax.servlet.jsp.*; import javax.servlet.jsp.tagext.*;

public class ReverseTag extends BodyTagSupport {

public int doEndTag() throws JspTagException {

BodyContent bodyContent = getBodyContent();

if (bodyContent != null) {// Do nothing if there was no body content

StringBuffer output = new StringBuffer(bodyContent.getString());

output.reverse();

try {
bodyContent.getEnclosingWriter().write(output.toString());

} catch (IOException ex) {

throw new JspTagException("Fatal IO error");

}

} return EVAL_PAGE;

}
}

reversing body content

structure of the war file

hello

hello.jsp META-INFWEB-INF

MANIFEST.MFweb.xmltlds classes

hello.tld HelloTag.class

A war file is a jar file with special directories and

a file named web.xml in the WEB-INF directory

21

21

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>

<tlibversion>1.0</tlibversion>

<jspversion>1.1</jspversion>

<shortname>examples</shortname>

<info>Simple example library.</info>

<tag>

<name>reverse</name>

<tagclass>tagext.ReverseTag</tagclass>

<bodycontent>JSP</bodycontent>

<info>Simple example</info>

</tag>

</taglib>

TLD

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN'
'http://java.sun.com/j2ee/dtds/web-app_2.2.dtd'>

<web-app>

<display-name>tagext</display-name>

<description>Tag extensions examples</description>

<session-config>

<session-timeout>0</session-timeout>

</session-config>

<taglib>

<taglib-uri>/hello</taglib-uri>

<taglib-location>/WEB-INF/tlds/hello.tld</taglib-location>

</taglib>

</web-app>

web.xml

22

22

Public Tag Libraries

See e.g.:

JSTL by Apache

http://jakarta.apache.org/taglibs/doc/standard-
doc/intro.html

Open Source JSP Tag Libraries by
JavaSource.net

http://java-source.net/open-source/jsp-tag-
libraries

