JSP

] I
Basic Elements

For a Tutorial, see:
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/ISPIntro.html

Simple.jsp

<htmli>
<body>
<% out.printin(“Hello World”); %>
</body>
</html>

JSP Lifecycle

CoOj—
_ ,,

JSP nuts and bolts

Syntactic elements: Implicit Objects:
<%@ directives %> -request
<:A>! def:laratlons %> -response
<% scriptlets %>
<%= expressions %> -page_Context
<jsp:actions/> *session
<%-- Comment --%> ~application
*out
-config

‘page

JSP nuts and bolts

Syntactic elements:
<%@ directives %> - Interaction with the CONTAINER

<%! declarations %> = In the initialization of the JSP

<% scriptlets %> - In the service method
<%= expressions %> <> In the service method

<jsp:actions/>

Scriptlets

A scriptlet is a block of Java code executed during the
request-processing time.

In Tomcat all the scriptlets gets put into the service()
method of the servlet. They are therefore processed for
every request that the servlet receives.

Scriptlet

Examples :
<% z=2+1; %>

<%
// Get the Employee’'s Name from the request
out.printin("Employee: " +
request.getParameter("employee"));
/I Get the Employee's Title from the request
out.printin("
Title: " +
request.getParameter("title"));

Y%o>

Expressions

An expression is a shorthand notation that sends
the evaluated Java expression back to the client
(in the form of a String).

Examples :
<%= getName() %>

<%@ page import=java.util.* %>
Sono le <%= new Date().toString(); %>

Expressions

<html><body>

<%! String nome="pippo” %>

<%! public String getName() {return nome;} %>
<H1>

Buongiorno

<%= getName() %>

</H1>

</body></htmli>

Declarations

A declaration is a block of Java code used to:

define class-wide variables and methods in the generated
servlet.

They are initialized when the JSP page is initialized.
<%! DECLARATION %>

Examples:
<%! String nome="pippo”’; %>

<%! public String getName() {return nome;} %>

Directives

A directive is used as a message mechanism to:
pass information from the JSP code to the container

Main directives:

page
include (for including other STATIC resources at
compilation time)

taglib (for including custom tag libraries)

Directives

<%@ DIRECTIVE {attributo=valore} %>

main attributes:

<%@ page language=java session=true %>
<%@ page import=java.awt.*java.util.* %>
<%@ page isThreadSafe=false %>

<%@ page errorPage=URL %>

<%@ page isErrorPage=true %>

Standard actions

Standard action are tags that affect the runtime behavior of
the JSP and the response sent back to the client.

<jsp:include page=“URL” />
For including STATIC or DYNAMIC resources at request

time

<jsp:forward page=“URL” />

What 1s a Java bean?

A bean is a Java class that:

Provides a public no-argument constructor
Implements java.io.Serializable
Follows JavaBeans design patterns

Has Add/remove methods for events

Java event model (as introduced by JDK 1.1)

Is thread safe/security conscious

Can run in an applet, application, servlet, ...

public class SimpleBean implements Serializable {

SimpleBean() {counter=0;}

}

See
http:/java.sun.com/developer/onlineTraining/Beans/JBeansAPIl/shortcourse.html

Standard actions involving beans

<jsp:useBean id="name” class=“fully_qualified_pathname”
scope="“{page|request|session|application}”’ />

<jsp:setProperty name="“nome” property="“value” />

<jsp:getProperty name=“nome” property=“value” />

<%@include@%> or <jsp:include> ?

When should I use a JSP <% @include@% > directive, and
when should I use a <jsp:include> action?

A JSP <% @include@%> directive (for example, <% @
include file="myfile.jsp" @%>) includes literal text "as
is" in the JSP page and is not intended for use with
content that changes at runtime. The include occurs only
when the serviet implementing the JSP page is being built
and compiled.

The <jsp:include> action allows you to include either static
or dynamic content in the JSP page. Static pages are
included just as if the <% @include@% > directive had
been used. Dynamic included files, though, act on the
given request and return results that are included in the
JSP page. The include occurs each time the JSP page is
served.

See also
http://java.sun.com/blueprints/ganda/web_tier/index.html#directive

<%-- Comment --%> or <!-- Comment --> ?

When should I use JSP-style comments instead of HTML-style
comments?

Always use JSP-style comments unless you specifically want the

page.
JSP-style comments are converted by the JSP page engine into
Java comments in the source code of the servlet that

appear in the output produced by the JSP page when it runs.
HTML-style comments pass through the JSP page engine
unmodified. They appear in the HTML source passed to the
requesting client.

results from the JSP page, but are useful to enhance the

comments to appear in the HTML that results from serving a ISP

implements the JSP page. Therefore, JSP-style comments don't

JSP-style comments do not increase the size of the document that

readability of the JSP page source, and to simplify debugging

the servlet generated from the JSP page.

(taken from:
http://java.sun.com/blueprints/qanda/web_tier/index.html#comments

Predefined Objects

out Writer

request HttpServiletRequest
response HttpServietResponse
session HttpSession

page this nel Servlet
application serviet.getServietContext

area condivisa tra i servlet

config ServietConfig
exception solo nella errorPage
pageContext sorgente degli oggetti, raramente usato

request

<%@ page errorPage="errorpage.jsp" %>
<html>
<head>
<titlesUseRequest</title>
</head>
<body>
<%
/I Get the User's Name from the request
out.printin("Hello: " + request.getParameter("user") + "");
%>
</body>
</html>

session

<%@ page errorPage="errorpage.jsp" %>
<html> <head> <title>UseSession</title> </head> <body>
<%
/I Try and get the current count from the session
Integer count = (Integer)session.getAttribute("COUNT");
/I If COUNT is not found, create it and add it to the session
if (count == null) {
count = new Integer(1);
session.setAttribute("COUNT", count);
}else {
count = new Integer(count.intValue() + 1);
session.setAttribute("COUNT", count);
}
/I Get the User's Name from the request
out.printin("Hello you have visited this site: " + count + " times. ");
%>
</body> </html>

10

10

JSP

Common patterns

Common JSP patterns

Page-centric (client-server)

/

CLIENT =

SERVER
CLIENT

11

11

Common JSP patterns

Page-centric 1 (client-server)

Page View

request

response

Common JSP patterns

Page-centric 2 (client-server)

Page View with Bean

request

response

12

12

Common JSP patterns

Dispatcher (n-tier) Mediator - View

-fﬁ

response

service

WebApps
(Tomcat configuration)

13

13

JSP pages

To let Tomcat serve JSP pages, we follow the same
procedure that we described for static pages.

In the myApp folder we can depost the JSP files.

On our Tomcat server, the URL for the hello.jsp file
becomes:

http://machine/port/myApp/hello.jsp

The WEB-INF directory still contains the same web.x
file as in the static case must be provided.

To actually see the webapp, you might have to resta
Tomcat (with older Tomcat versions)

webapps

myApp

ml :/‘

WEB-INF | hello.jsp

"l

web.xml

JSP

Tag Extension

http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html

14

14

JSP custom tag

Ideally, JSP pages should contain no code written in the
Java programming language (that is, no expressions or
scriptlets). Anything a JSP page needs to do with Java
code can be done from a

custom tag

Separation of form and function.
Separation of developer skill sets and activities.

Code reusability.

Clarified system design.

a JSP custom tag

<%@ taglib uri="/hello” prefix="example" %>
<HTML><HEAD><TITLE>First custom tag</TITLE></HEAD>
<BODY>

This is static output
<p/>
<i><example:hello>HELLO THERE</example:hello></i>
This is static output

</BODY>

</HTML>

hello.doStartTag()

hello.doEndTag()

15

15

a JSP custom tag

package jsptags;

import java.io.lOException;
import java.util.Date;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class HelloTag extends TagSupport {
public int doStartTag() throws JspTagException {
try {
pageContext.getOut().write("Start tag found here
");
} catch (IOException e) {
throw new JspTagException("Fatal error: could not write to JSP out");
}
return EVAL_BODY_INCLUDE; // return SKIP_BODY;

}

a JSP custom tag

public class HelloTag extends TagSupport {

public int doEndTag() throws JspTagException {
try {
pageContext.getOut().write("End tag found
");
} catch (IOException e) {
throw new JspTagException("Fatal error: could not write to JSP out");
}
return EVAL_PAGE; // return SKIP_PAGE;
}
}

16

16

Javax.servlet.jsp.tagext. T'ag interface

setPageContext(pageContext)

setParent(enclosingTag)

setAttribute 1 (pageContext)

doStartTag()

doEndTag()

A 4

release()

Class Diagram

<<Interface>>
Tag

[®doStart(Tag)
[®doEnd(Tag)
[®getParent()
[Srelease()
[®setPageContent()
[MsetParent()

<<Interface>>
BodyTag

S doAfterBody()
[MdolnitBody ()
[®setBody Content()

TagSupport

[®icstatic> findAncestorWithClass()

Body TagSupport

-getBodyContent()
[®getPreviousOut()

YourOwnBody Tag

A BodyTag can
manipulate its body,
using its BodyContent
object, while a normal
Tag cannot.

BodyTags are useful
when you want to use

or transform the contents

of the tag.

YourOwnBody Tag

17

17

a JSP custom tag

<%@ taglib uri="/hello” prefix="example" %>
<HTML><HEAD><TITLE>First custom tag</TITLE></HEAD>

<BODY> hello.doStartTag()
hello.dolnitBody()

This is static output
<p/>
<i><example:hello>HELLO THERE</example:hello></i>
This is static output

</BODY>

</HTML>

hello.doAfterBody()

hello.doEndTag()

a JSP custom tag

package jsptags;

public class HelloTag extends BodyTagSupport {
public int doStartTag() throws JspTagException {

}
public void dolnitBody() throws JspTagException {

try {
pageContext.getOut().write("Init Body
");
} catch (IOException e) {
throw new JspTagException("Fatal error: could not write to JSP out");
}
}

18

18

a JSP custom tag

public int doAfterBody() throws JspTagException {
try {
pageContext.getOut().write("After Body
");
} catch (IOException e) {
throw new JspTagException("Fatal error: could not write to JSP out");
}
return EVAL_BODY_TAG; // return SKIP_BODY;
Y
public int doEndTag() throws JspTagException {

}
}

Javax.servlet.jsp.tagext.BodyTag interface

setPageContext(pageContext)
setParent(enclosingTag)
setAttribute1()

doStartTag()

pushBody()
setBodyContent(out)
dolnitBody()

doAfterBody()

popBody() .
doEndTag()

release()

19

19

reversing body content

import java.io.lOException; import javax.servlet.jsp.*; import javax.servlet.jsp.tagext.*;
public class ReverseTag extends BodyTagSupport {
public int doEndTag() throws JspTagException {
BodyContent bodyContent = getBodyContent();
if (bodyContent != null) {// Do nothing if there was no body content
StringBuffer output = new StringBuffer(bodyContent.getString());
output.reverse();

try {
bodyContent.getEnclosingWriter().write(output.toString());

} catch (IOException ex) {
throw new JspTagException("Fatal 10 error");

}
} return EVAL_PAGE;

structure of the war file

A war file is a jar file with special directories and
a file named web.xml in the WEB-INF directory

/ ‘ T
- hello.jsp -

| |

hello.tld HelloTag.class

20

20

TLD

<?xml version="1.0" encoding="1S0-8859-1" ?>
<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1/EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">
<taglib>
<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>examples</shorthame>
<info>Simple example library.</info>
<tag>
<hame>reverse</name>
<tagclass>tagext.ReverseTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>Simple example</info>
</tag>
</taglib>

web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN’
'http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<display-name>tagext</display-name>
<description>Tag extensions examples</description>
<session-config>
<session-timeout>0</session-timeout>
</session-config>

<taglib>
<taglib-uri>/hello</taglib-uri>
<taglib-location>/WEB-INF/tlds/hello.tld</taglib-location>
</taglib>

</web-app>

21

21

Public Tag Libraries

See e.qg.:
JSTL by Apache

Open Source JSP Tag Libraries by
JavaSource.net

22

22

