
1

1

J0
1

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

Java XML parsing

J0
2

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

Tree-based API
A tree-based API compiles an XML document into an internal

tree structure. This makes it possible for an application
program to navigate the tree to achieve its objective. The

Document Object Model (DOM) working group at the W3C is
developing a standard tree-based API for XML.

Event-based API
An event-based API reports parsing events (such as the start
and end of elements) to the application using callbacks. The
application implements and registers event handlers for the
different events. Code in the event handlers is designed to

achieve the objective of the application. The process is similar
(but not identical) to creating and registering event listeners in

the Java Delegation Event Model.

Tree-based vs Event-based API

2

2

J0
3

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

SAX is a set of interface definitions

For the most part, SAX is a set of interface definitions. They

specify one of the ways that application programs can interact

with XML documents.

(There are other ways for programs to interact with XML documents

as well. Prominent among them is the Document Object Model,

or DOM)

SAX is a standard interface for event-based XML parsing, developed

collaboratively by the members of the XML-DEV mailing list. SAX

1.0 was released on Monday 11 May 1998, and is free for both

commercial and noncommercial use.

The current version is SAX 2.0.1 (released on 29-January 2002)

See http://www.saxproject.org/

what is SAX?

J0
4

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

JAXP: Java API for XML Processing

This API provides a common interface for creating and using the

standard SAX, DOM, and XSLT APIs in Java, regardless of which

vendor's implementation is actually being used.

The main JAXP APIs are defined in the javax.xml.parsers package.

That package contains two vendor-neutral factory classes:

SAXParserFactory and DocumentBuilderFactory that give you a

SAXParser and a DocumentBuilder, respectively. The

DocumentBuilder, in turn, creates DOM-compliant Document

object.

The actual binding to a DOM or SAX engine can be specified using

the System properties (but a default is provided).

JAXP

3

3

J0
5

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

org.xml.sax Defines the basic SAX APIs.

The "Simple API" for XML (SAX) is the event-driven, serial-access
mechanism that does element-by-element processing. The API for this
level reads and writes XML to a data repository or the Web.

org.w3c.dom Defines the Document class (a DOM), as well as

classes for all of the components of a DOM.

The DOM API is generally an easier API to use. It provides a familiar tree
structure of objects. You can use the DOM API to manipulate the hierarchy
of application objects it encapsulates. The DOM API is ideal for interactive
applications because the entire object model is present in memory, where it
can be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML
structure and holding the object tree in memory, so it is much more CPU
and memory intensive.

javax.xml.transform Defines the XSLT APIs that let you
transform XML into other forms.

JAXP – other packages

J0
6

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

SAX architecture

SAXParserFactory factory = SAXParserFactory.newInstance();

factory.setValidating(true); //optional - default is non-validating

SAXParser saxParser = factory.newSAXParser();

saxParser.parse(File f, DefaultHandler-subclass h)

File containing

input XML

Default-handler

(classe che

implementa le

callback)

Interfaces implemented

by DefaultHandler class

wraps

4

4

J0
7

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

SAX packages

Package Description

org.xml.sax Defines the SAX interfaces. The name "org.xml" is the package

prefix that was settled on by the group that defined the SAX API.

org.xml.sax.ext

Defines SAX extensions that are used when doing more

sophisticated SAX processing, for example, to process a document

type definitions (DTD) or to see the detailed syntax for a file.

org.xml.sax.hel

pers

Contains helper classes that make it easier to use SAX -- for

example, by defining a default handler that has null-methods for all

of the interfaces, so you only need to override the ones you actually

want to implement.

javax.xml.parse

rs

Defines the SAXParserFactory class which returns the SAXParser.

Also defines exception classes for reporting errors.

J0
8

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

// ----------------------------- ContentHandler methods

void characters(char[] ch, int start, int length)

void startDocument()

void startElement(String name, AttributeList attrs)

void endElement(String name)

void endDocument()

void processingInstruction(String target,String data)

SAX callbacks

5

5

J0
9

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

import java.io.*;

import org.xml.sax.*;

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.SAXParser;

public class CountSax extends DefaultHandler {

public static void main(String argv[]) throws Exception {

if (argv.length != 1) {

System.err.println("Usage: cmd filename");

System.exit(1);

}

// JAXP methods

SAXParserFactory factory = SAXParserFactory.newInstance();

SAXParser saxParser = factory.newSAXParser();

saxParser.parse(new File(argv[0]), new CountSax());

}

SAX example

Obtain a SAX parser,

Parse the file

J0
10

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

package jaxp_demo;

import java.io.*;

import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.SAXParser;

public class Echo01

{

public static void main(String argv[])

{

if (argv.length != 1) {

System.err.println("Usage: cmd filename");

System.exit(1);

}

new Echo01(argv[0]);

}

SAX example 1

6

6

J0
11

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

public Echo01(String filename) {

DefaultHandler handler = new MySaxHandler();

// Use the default (non-validating) parser

SAXParserFactory factory = SAXParserFactory.newInstance();

try {

SAXParser saxParser = factory.newSAXParser();

saxParser.parse(new File(filename), handler);

} catch (Throwable t) {

t.printStackTrace();

}

System.exit(0);

}

}

SAX example 1

Obtain a SAX parser,

Parse the file

J0
12

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

package jaxp_demo;

import org.xml.sax.helpers.DefaultHandler;

import org.xml.sax.*;

import java.io.*;

public class MySaxHandler extends DefaultHandler {

int indentCount=0;

String indentString=" ";

private PrintStream out = System.out;

private void emit(String s) {

out.print(s);

out.flush();

}

private void nl() {

String lineEnd = System.getProperty("line.separator");

out.print(lineEnd);

}

private void indent(){

String s="";

for (int i=1;i<=indentCount;i++) s=s+indentString;

out.print(s);

}

SAX example 1

Utility methods

7

7

J0
13

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

//==

// SAX DocumentHandler methods

//==

public void startDocument() throws SAXException {

emit("<?xml version='1.0' encoding='UTF-8'?>");

nl();

}

public void endDocument() throws SAXException {

nl();

out.flush();

}

SAX example 1

J0
14

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

public void startElement(String namespaceURI,

String lName, // local name

String qName, // qualified name

Attributes attrs) throws SAXException {

String eName = lName; // element name

if ("".equals(eName)) eName = qName;

indent();

emit("<" + eName);

if (attrs != null) {

for (int i = 0; i < attrs.getLength(); i++) {

String aName = attrs.getLocalName(i); // Attr name

if ("".equals(aName)) aName = attrs.getQName(i);

emit(" ");

emit(aName + "=\"" + attrs.getValue(i) + "\"");

}

}

emit(">");

nl();

indentCount++;

}

SAX example 1

8

8

J0
15

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

public void endElement(String namespaceURI,

String sName, // simple name

String qName // qualified name

) throws SAXException {

indentCount--;

indent();

emit("</" + qName + ">");

nl();

}

public void characters(char buf[], int offset, int len)

throws SAXException {

//String s = new String(buf, offset, len);

//emit(s);

}

}

SAX example 1

J0
16

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

A full tutorial with more info and details

http://java.sun.com/webservices/jaxp/dist/1.1/docs/
tutorial/sax/index.html

SAX references

9

9

J0
17

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

DOM architecture

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setValidating(true); // optional – default is non-validating

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.parse(file);

J0
18

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

DOM packages

Package Description

org.w3c.dom Defines the DOM programming interfaces for XML (and,

optionally, HTML) documents, as specified by the W3C.

javax.xml.parsers

Defines the DocumentBuilderFactory class and the

DocumentBuilder class, which returns an object that implements

the W3C Document interface. The factory that is used to create the

builder is determined by the javax.xml.parsers system property,

which can be set from the command line or overridden when

invoking the newInstance method. This package also defines the

ParserConfigurationException class for reporting errors.

10

10

J0
19

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

public interface Node

The Node interface is the primary datatype for the entire DOM. It

represents a single node in the document tree. While all objects

implementing the Node interface expose methods for dealing with

children, not all objects implementing the Node interface may have

children. For example, Text nodes may not have children, and

adding children to such nodes results in a DOMException being

raised.

The attributes nodeName, nodeValue and attributes are included as a

mechanism to get at node information without casting down to the

specific derived interface. In cases where there is no obvious

mapping of these attributes for a specific nodeType (e.g.,

nodeValue for an Element or attributes for a Comment), this returns

null. Note that the specialized interfaces may contain additional and

more convenient mechanisms to get and set the relevant

information.

The Node interface

J0
20

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

public interface Document extends Node
The Document interface represents the entire HTML or XML document.

Conceptually, it is the root of the document tree, and provides the primary
access to the document's data. Since elements, text nodes, comments,
processing instructions, etc. cannot exist outside the context of a
Document, the Document interface also contains the factory methods
needed to create these objects. The Node objects created have a
ownerDocument attribute which associates them with the Document within

whose context they were created.

The Document interface

11

11

J0
21

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

The Node hierarchy

<!-- Demo -->

hello

mydocument

comment

Demo

A id=“3”

hello

Document

Comment Text

Entity

Attr

Node

CharacterData

J0
22

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

The Node hierarchy

EntityReference ProcessingInstructionDocumentType

DocumentFragment Notation

CDATASection

Document

Comment Text

Entity

Attr

Node

CharacterData

12

12

J0
23

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

Node: WARNING!

The implied semantic of this model is

WRONG!

You might deduce that a comment might contain another comment, or

a document, or any other node!

The integrity is delegated to a series of Node’s attributes, that the

programmer should check.

J0
24

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

Node: main methods

NAVIGATION

Node getParentNode() The parent of this node.

NodeList getChildNodes() A NodeList that contains all children of this node.

Node getFirstChild() The first child of this node.

Node getLastChild() The last child of this node.

Node getNextSibling() The node immediately following this node

.

Node getPreviousSibling() The node immediately preceding this node.

13

13

J0
25

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

The Node interface

nullvalue of attributename of attributeAttr

nullcontent of the text node"#text“Text

nullentire content excluding
the target

targetProcessingInstruction

nullnullnotation nameNotation

nullnullname of entity
referenced

EntityReference

nullnullentity nameEntity

NamedNodeMapnulltag nameElement

nullnulldocument type nameDocumentType

nullnull"#document-fragment“DocumentFragment

nullnull"#document“Document

nullcontent of the comment"#comment“Comment

nullcontent of the CDATA
Section

"#cdata-section“CDATASection

attributesnodeValuenodeNameInterface

J0
26

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

Node: main methods

INSPECTION

int getNodeType()

The type of this node

java.lang.String getNodeName()

The name of this node, depending on its type; see table.

Short getNodeType()

A code representing the type of the underlying object.

java.lang.String getNodeValue()

The value of this node, depending on its type; see the table.

Document getOwnerDocument()

The Document object associated with this node.

Boolean hasAttributes()

Returns whether this node (if it is an element) has any attributes.

Boolean hasChildNodes()

Returns whether this node has any children.

14

14

J0
27

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

Node: main methods
EDITING NODES

Node cloneNode(boolean deep)

Returns a duplicate of this node, i.e., serves as a generic copy constructor

for nodes.

void setNodeValue(java.lang.String nodeValue)

The value of this node, depending on its type; see the table.

J0
28

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

Node: main methods
EDITING STRUCTURE

Node appendChild(Node newChild)

Adds the node newChild to the end of the list of children of this node.

Node removeChild(Node oldChild)

Removes the child node indicated by oldChild from the list of children, and

returns it.

Node replaceChild(Node newChild, Node oldChild)

Replaces the child node oldChild with newChild in the list of children, and

returns the oldChild node.

Node insertBefore(Node newChild, Node refChild)

Inserts the node newChild before the existing child node refChild.

void normalize()

Puts all Text nodes in the full depth of the sub-tree underneath this Node,

including attribute nodes, into a "normal" form where only structure (e.g., elements,

comments, processing instructions, CDATA sections, and entity references)

separates Text nodes, i.e., there are neither adjacent Text nodes nor empty Text

nodes.

15

15

J0
29

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

Switch (node.getNodeType()) {

case Node.ELEMENT_NODE; …; break;

case Node.ATTRIBUTE_NODE; …; break;

case Node.TEXT_NODE; …; break;

case Node.CDATA_SECTION_NODE; …; break;

case Node.ENTITY_REFERENCE_NODE; …; break;

case Node.PROCESSING_INSTRUCTION; …; break;

case Node.COMMENT_NODE; …; break;

case Node.DOCUMENT_NODE; …; break;

case Node.DOCUMENT_TYPE_NODE; …; break;

case Node.DOCUMENT_FRAGMENT_NODE; …; break;

case Node.NOTATION_NODE; …; break;

default: throw (new Exception());

}

NODE: determining the type

J0
30

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

import java.io.*;

import org.w3c.dom.*;

import org.xml.sax.*; // parser uses SAX methods to build DOM object

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

public class CountDom {

public static void main(String[] arg) throws Exception {

if (arg.length != 1) {

System.err.println("Usage: cmd filename (file must exist)");

System.exit(1);

}

Node node = readFile(new File(arg[0]));

System.out.println(arg + " elementCount: " + getElementCount(node));

}

}

DOM example

16

16

J0
31

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

public static Document readFile(File file) throws Exception {

Document doc;

try {

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setValidating(true);

DocumentBuilder db = dbf.newDocumentBuilder();

doc = db.parse(file);

return doc;

} catch (SAXParseException ex) {

throw (ex);

} catch (SAXException ex) {

Exception x = ex.getException(); // get underlying Exception

throw ((x == null) ? ex : x);

}

}

DOM example

Parse File,

Return Document

J0
32

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

public static int getElementCount(Node node) {

if (null == node) return 0;

int sum = 0;

boolean isElement = (node.getNodeType() == Node.ELEMENT_NODE);

if (isElement) sum = 1;

NodeList children = node.getChildNodes();

if (null == children) return sum;

for (int i = 0; i < children.getLength(); i++) {

sum += getElementCount(children.item(i)); // recursive call

}

return sum;

}

}

DOM example

use DOM methods to count elements:

for each subtree if the root is an Element,

set sum to 1, else to 0;

add element count of all children of the root to sun

17

17

J0
33

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

"Build a better mousetrap, and the world will
beat a path to your door."

--Emerson

Alternatives to DOM

J0
34

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

JDOM: Java DOM (see http://www.jdom.org).

The standard DOM is a very simple data structure that intermixes text
nodes, element nodes, processing instruction nodes, CDATA nodes,
entity references, and several other kinds of nodes. That makes it
difficult to work with in practice, because you are always sifting through
collections of nodes, discarding the ones you don't need into order to
process the ones you are interested in. JDOM, on the other hand,
creates a tree of objects from an XML structure. The resulting tree is
much easier to use, and it can be created from an XML structure
without a compilation step.

DOM4J: DOM for Java (see http://www.dom4j.org/)

dom4j is an easy to use, open source library for working with XML, XPath
and XSLT on the Java platform using the Java Collections Framework

and with full support for DOM, SAX and JAXP.

Alternatives to DOM

18

18

J0
35

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

Using XSLT from Java

Transformations

J0
36

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

TrAX

TransformerFactory tf = TransformerFactory .newInstance();

StreamSource xslSS=new StreamSource(“source.xsl”);

StreamSource xmlSS=new StreamSource(“source.xml”);

Transformer t=tf.newTrasformer(xslSS);

t.transform(xmlSS,new StreamResult(new
FileOutputStream(“out.html”);

java –Djavax.xml.transform.TransformerFactory=
org.apache.xalan.processor.TrasformerFactoryImpl MyClass

19

19

J0
37

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

xml.transform packages

Package Description

javax.xml.transfo

rm
Defines the TransformerFactory and Transformer classes, which

you use to get a object capable of doing transformations. After

creating a transformer object, you invoke its transform() method,

providing it with an input (source) and output (result).

javax.xml.transfo

rm.dom

Classes to create input (source) and output (result) objects from a

DOM.

javax.xml.transfo

rm.sax

Classes to create input (source) from a SAX parser and output

(result) objects from a SAX event handler.

javax.xml.transfo

rm.stream

Classes to create input (source) and output (result) objects from an

I/O stream.

J0
38

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

javax.xml.transform.Transformer

transform(Source xmls, Result output)

javax.xml.transform.sax.SAXResult implements Result

javax.xml.transform.sax.SAXSource implements Source

javax.xml.transform.stream.StreamResult implements Result

javax.xml.transform.stream.StreamSource implements Source

javax.xml.transform.dom.DOMResult implements Result

javax.xml.transform. dom.DOMSource implements Source

TrAX main classes

20

20

J0
39

M
ar

co
 R

o
n
ch

et
ti

 -


2

0
0

5

“Distributed systems design” – Laurea Specialistica in Informatica – Università di Trento

Java Architecture for XML Binding (JAXB) provides a
convenient way to bind an XML schema to a
representation in Java code.

See also:

• JAX-WS

• JAX-SWA

• JAX- RPC

• SAAJ

• XML –Digital Signatures

• ecc.

Other Java-XML APIs

