“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

o

Marco Ronchetti - ©2005

Java XML parsing

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

Tree-based vs Event-based API wﬂSﬂ

Marco Ronchetti - ©2005

Tree-based API
A tree-based API compiles an XML document into an internal
tree structure. This makes it possible for an application
program to navigate the tree to achieve its objective. The
Document Object Model (DOM) working group at the W3C is
developing a standard tree-based API for XML.

Event-based API
An event-based API reports parsing events (such as the start
and end of elements) to the application using callbacks. The
application implements and registers event handlers for the
different events. Code in the event handlers is designed to
achieve the objective of the application. The process is similar
(but not identical) to creating and registering event listeners in

the Java Delegation Event Model.

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

what is SAX? o

- ©2005

Marco Ronchetti

SAX is a set of interface definitions
For the most part, SAX is a set of interface definitions. They
specify one of the ways that application programs can interact
with XML documents.

(There are other ways for programs to interact with XML documents
as well. Prominent among them is the Document Object Model,
or DOM)

SAX is a standard interface for event-based XML parsing, developed
collaboratively by the members of the XML-DEV mailing list. SAX
1.0 was released on Monday 11 May 1998, and is free for both
commercial and noncommercial use.
The current version is SAX 2.0.1 (released on 29-January 2002)

See

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

JAXP wﬂsﬂ

- ©2005

Marco Ronchetti

JAXP:

This API provides a common interface for creating and using the
standard SAX, DOM, and XSLT APIs in Java, regardless of which
vendor's implementation is actually being used.

The main JAXP APIs are defined in the package.
That package contains two vendor-neutral factory classes:
SAXParserFactory and DocumentBuilderFactory that give you a
SAXParser and a DocumentBuilder, respectively. The
DocumentBuilder, in turn, creates DOM-compliant Document
object.

The actual binding to a DOM or SAX engine can be specified using
the System properties (but a default is provided).

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

JAXP - other packages poHS“

- ©2005

Marco Ronchetti

org.xml.sax

The "Simple API" for XML (SAX) is the event-driven, serial-access
mechanism that does element-by-element processing. The API for this
level reads and writes XML to a data repository or the Web.

org.w3c.dom

The DOM API is generally an easier API to use. It provides a familiar tree
structure of objects. You can use the DOM API to manipulate the hierarchy
of application objects it encapsulates. The DOM API is ideal for interactive
applications because the entire object model is present in memory, where it
can be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML
structure and holding the object tree in memory, so it is much more CPU
and memory intensive.

javax.xml.transform
JO
5
“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento
SAX architecture ol
SAXParserFactory factory = SAXParserFactory.newinstance();
SAXParser saxParser = factory.newSAXParser();
g saxParser.parse(File f, DefaultHandler-subclass h)
N File containing
£ S e input XML
| | S
? Default-handler
g (classe che
SAXParser |, rabk }fall:;l‘ﬂ implementa le
SAX callback)
j Reader
XML E (H?;ﬁﬁer Interfaces implemented
by DefaultHandler class
Jo k

Entity
Resolver

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

SAX packages pol‘sﬂ

Package Description
org.xml.sax Defines the SAX interfaces. The name "org.xml" is the package
prefix that was settled on by the group that defined the SAX API.

g Defines SAX extensions that are used when doing more
. org.xml.sax.ext | sophisticated SAX processing, for example, to process a document
3 type definitions (DTD) or to see the detailed syntax for a file.
% Contains helper classes that make it easier to use SAX -- for
= example, by defining a default handler that has null-methods for all

org.xml.sax.hel ¢ e interfaces, so you only need to override the ones you actually

pers want to implement.

javax.xml.parse Defines the SAXParserFactory class which returns the SAXParser.
70 rs Also defines exception classes for reporting errors.
7

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento
Il ContentHandler methods
void characters(char[] ch, int start, int length)

. void startElement(String name, AttributeList attrs)
§ void endElement(String name)
Lf void processinglnstruction(String target,String data)
5
8
=
Jo

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

SAX example wﬂSﬂ

- ©2005

Marco Ronchetti

import java.io.”;

import org.xml.sax.*;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;

public class CountSax extends DefaultHandler {
public static void main(String argv[]) throws Exception {

if (argv.length != 1) {

System.err.printin("Usage: cmd filename");

System.exit(1);
}

Obtain a SAX parser,

/I JAXP methods Parse the file
SAXParserFactory factory = SAXParserFactory.newlnstance();
SAXParser saxParser = factory.newSAXParser();
saxParser.parse(new File(argv[0]), new CountSax());

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

SAX example 1 pOl‘sAx

- ©2005

Marco Ronchetti

Jo
10

package jaxp_demo;

import java.io.¥*;

import org.xml.sax.helpers.DefaultHandler;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;

public class EchoOl

{
public static void main(String argv[])
{
if (argv.length != 1) {
System.err.println("Usage: cmd filename");
System.exit (1) ;
}
new EchoOl (argv[0]);
}

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

SAX example 1 poﬂsAx

public EchoOl (String filename) {
DefaultHandler handler = new MySaxHandler();
// Use the default (non-validating) parser
SAXParserFactory factory = SAXParserFactory.newlInstance();
try {

w
i=3
é SAXParser saxParser = factory.newSAXParser();
. saxParser.parse(new File(filename), handler);
% } catch (Throwable t) { Obtai SAX
£ . In rser
& t.printStackTrace(); aina . parser,
g } Parse the file
<
= System.exit (0);
}
}
JO
11
“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento
package jaxp_demo;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.*;
import java.io.¥;
public class MySaxHandler extends DefaultHandler ({
0 int indentCount=0;
é String indentString=" "
) private PrintStream out = System.out;
g private void emit (String s) {
= s .
g out .print (s); ility meth
2 out.flush(); Utility methods
g }
§ private void nl() {
String lineEnd = System.getProperty("line.separator");
out.print (lineEnd);
}
private void indent () {
String s="";
for (int i=1l;i<=indentCount;i++) s=s+indentString;
10 out.print (s);

12

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

SAX example 1 poﬂsAx

// SAX DocumentHandler methods

//========================s=sssss======s=ss=sssssssssss====s
public void startDocument () throws SAXException {
g emit ("<?xml version='1.0' encoding='UTF-8'?>");
© nl();
E: }
j:l)
2
% public void endDocument () throws SAXException ({
g nl();
= out.flush();
}
JO
13
“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento
SAX example 1 pOl‘sAx
public void startElement (String namespaceURI,
String 1lName, // local name
String gName, // qualified name
Attributes attrs) throws SAXException ({
String eName = 1lName; // element name
§ if ("".equals(eName)) eName = gName;
3 indent () ;
; emit ("<" + eName);
3 if (attrs != null) {
g for (int i = 0; i < attrs.getLength(); i++) {
% String aName = attrs.getlLocalName(i); // Attr name
§ if ("".equals(aName)) aName = attrs.getQName (i);
emit (" ");
emit (aName + "=\"" + attrs.getValue(i) + "\"");
}
}
emit (">"
nl();
indentCount++;
Jo }

14

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

SAX example 1

public void endElement (String namespaceURI,
String sName, // simple name
String gName // qualified name
) throws SAXException {

g indentCount--;
9 indent () ;
] emit ("</" + gName + ">");
2 nl();
& }
§ public void characters(char buf[], int offset, int len)
throws SAXException ({
//String s = new String(buf, offset, len);
//emit (s);
}
}

70
15

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

SAX references pt)“sAx
A full tutorial with more info and details

5 || httpy//java.sun.com/webservices/jaxp/dist/1.1/docs/
. tutorial/sax/index.html
E
5
70

16

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

DOM architecture poﬂsAx

DocumentBuilderFactory dbf = DocumentBuilderFactory.newlnstance();

DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse(file);

8

' DocumentBuilder

§ Factory

5

=]

<

s [

p- - Docunent (DOM)

\-_/ ,—b Document ’—b @
70
17
“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento
Package Description
org.w3c.dom Defines the DOM programming interfaces for XML (and,
optionally, HTML) documents, as specified by the W3C.

8 Defines the DocumentBuilderFactory class and the
B DocumentBuilder class, which returns an object that implements
= the W3C Document interface. The factory that is used to create the
2 javax.xml.parsers builder is determined by the javax.xml.parsers system property,
é which can be set from the command line or overridden when

g invoking the newlnstance method. This package also defines the
= ParserConfigurationException class for reporting errors.
J0

18

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

The Node interface " g

- ©2005

Marco Ronchetti

Jo
19

public interface Node

The Node interface is the primary datatype for the entire DOM. It
represents a single node in the document tree. While all objects
implementing the Node interface expose methods for dealing with
children, not all objects implementing the Node interface may have
children. For example, Text nodes may not have children, and
adding children to such nodes results in a DOMException being
raised.

The attributes nodeName, nodeValue and attributes are included as a
mechanism to get at node information without casting down to the
specific derived interface. In cases where there is no obvious
mapping of these attributes for a specific nodeType (e.g.,
nodeValue for an Element or attributes for a Comment), this returns
null. Note that the specialized interfaces may contain additional and
more convenient mechanisms to get and set the relevant
information.

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

The Document interface poHSAx

- ©2005

Marco Ronchetti

Jo
20

public interface Document extends Node

The Document interface represents the entire HTML or XML document.
Conceptually, it is the root of the document tree, and provides the primary
access to the document's data. Since elements, text nodes, comments,
processing instructions, etc. cannot exist outside the context of a
Document, the Document interface also contains the factory methods
needed to create these objects. The Node objects created have a
ownerDocument attribute which associates them with the Document within

whose context they were created.

10

10

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

The Node hierarchy poﬂs"(

I
§ Document | | Entity CharacterData
©
g |Comment|
S
g
<!-- Demo -->
hello [comment | [A |} id=3"]
10 | Demo | | hello |
21
“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento)
The Node hierarchy g
—{ ok |
/\
| | | |
§ | Document| |DocumentType| |EntityReference| | Processinglnstruction
ig DocumentFragment Entity |Notation| |CharacterData|
&
|Comment| | Text |
/\
JO
22

11

11

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

Node: WARNING! ¥

- ©2005

Marco Ronchetti

The implied semantic of this model is
WRONG!

You might deduce that a comment might contain another comment, or
a document, or any other node!

The integrity is delegated to a series of Node’s attributes, that the
programmer should check.

Jo
23
“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento
Node: main methods
NAVIGATION

The parent of this node.
= A NodelList that contains all children of this node.
3
B The first child of this node.
: The last child of this node.
é The node immediately following this node

The node immediately preceding this node.
Jo
24

12

12

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

The Node interface

s

Interface nodeName nodeValue attributes
Attr name of attribute value of attribute null
CDATASection "#cdata-section” content of the CDATA null
Section
8 Comment "#comment” content of the comment | null
8. Document "#document*” null null
£ DocumentFragment "#document-fragment” | null null
<
5 DocumentType document type name | null null
g Element tag name null NamedNodeMap
= Entity entity name null null
EntityReference name of entity null null
referenced
Notation notation name null null
Processinglnstruction | target entire content excluding | null
the target
12(3_) Text "#text* content of the text node | null
“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento
L]
Node: main methods
INSPECTION
The type of this node
8 The name of this node, depending on its type; see table.
3 A code representing the type of the underlying object.
=]
=}
Me The value of this node, depending on its type; see the table.
s
The Document object associated with this node.
Returns whether this node (if it is an element) has any attributes.
Returns whether this node has any children.
JO
26

13

13

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

Node: main methods poHS”

- ©2005

Marco Ronchetti

Jo
27

EDITING NODES

Returns a duplicate of this node, i.e., serves as a generic copy constructor
for nodes.

The value of this node, depending on its type; see the table.

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

Node: main methods wnsﬂ

- ©2005

Marco Ronchetti

Jo
28

EDITING STRUCTURE
Adds the node newChild to the end of the list of children of this node.

Removes the child node indicated by oldChild from the list of children, and
returns it.

Replaces the child node oldChild with newChild in the list of children, and
returns the oldChild node.

Inserts the node newChild before the existing child node refChild.

Puts all Text nodes in the full depth of the sub-tree underneath this Node,
including attribute nodes, into a "normal" form where only structure (e.g., elements,
comments, processing instructions, CDATA sections, and entity references)
separates Text nodes, i.e., there are neither adjacent Text nodes nor empty Text
nodes.

14

14

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

NODE: determining the type poﬂsAx

- ©2005

Marco Ronchetti

Jo
29

Switch (node.getNodeType()) {
case Node.ELEMENT_NODE; ...; break;
case Node.ATTRIBUTE_NODE; ...; break;
case Node.TEXT_NODE; ...; break;
case Node.CDATA SECTION_NODE; ...; break;
case Node.ENTITY_REFERENCE_NODE; ...; break;
case Node.PROCESSING_INSTRUCTION; ...; break;
case Node.COMMENT_NODE; ...; break;
case Node.DOCUMENT_NODE; ...; break;
case Node.DOCUMENT_TYPE_NODE; ...; break;
case Node.DOCUMENT_FRAGMENT_NODE; ...; break;
case Node.NOTATION_NODE; ...; break;
default: throw (new Exception());

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

DOM example pt)l‘sAx

- ©2005

Marco Ronchetti

Jo
30

import java.io.”;

import org.w3c.dom.*;

import org.xml.sax.*; // parser uses SAX methods to build DOM object
import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

public class CountDom {
public static void main(String[] arg) throws Exception {

if (arg.length != 1) {
System.err.printin("Usage: cmd filename (file must exist)");
System.exit(1);

}

readFile(new File(arg[0]))
getElementCount(node)

15

15

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

DOM example pO“sAx

- ©2005

Marco Ronchetti

Jo
31

public static Document readFile(File file) throws Exception {

Document doc; Parse File,

try { Return Document
DocumentBuilderFactory dbf = DocumentBuilderFactory.newlnstance();
dbf.setValidating(true);
DocumentBuilder db = dbf.newDocumentBuilder();
doc = db.parse(file);
return doc;

} catch (SAXParseException ex) {
throw (ex);

} catch (SAXException ex) {
Exception x = ex.getException(); // get underlying Exception
throw ((x == null) ? ex : x);

}

}

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

DOM example pO“sAx

- ©2005

Marco Ronchetti

Jo
32

public static int getElementCount(Node node) {
if (null == node) return 0;
int sum = 0;
boolean isElement = (node.getNodeType() == Node.ELEMENT_NODE);
if (isElement) sum =1;
NodelList children = node.getChildNodes();
if (null == children) return sum;

for (inti = 0; i < children.getLength(); i++) {
sum += getElementCount(children.item(i)); // recursive call

}

use DOM methods to count elements:
return sum;

for each subtree if the root is an Element,
set sum to 1, else to 0;
add element count of all children of the root to sun

16

16

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

Alternatives to DOM g

- ©2005

Marco Ronchetti

Jo
33

"Build a better mousetrap, and the world will
beat a path to your door."
--Emerson

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

Alternatives to DOM ¥

- ©2005

Marco Ronchetti

Jo
34

JDOM: (see)-

The standard DOM is a very simple data structure that intermixes text
nodes, element nodes, processing instruction nodes, CDATA nodes,
entity references, and several other kinds of nodes. That makes it
difficult to work with in practice, because you are always sifting through
collections of nodes, discarding the ones you don't need into order to
process the ones you are interested in. JDOM, on the other hand,
creates a tree of objects from an XML structure. The resulting tree is
much easier to use, and it can be created from an XML structure
without a compilation step.

DOM4J: (see)

domdj is an easy to use, open source library for working with XML, XPath
and XSLT on the Java platform using the Java Collections Framework

and with full support for DOM, SAX and JAXP.

17

17

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

Transformations o

o Using XSLT from Java
=1
z
3
Jo
35
“Distributed systems design” - Laurea Specialis
Transformer -
Factory
TrAX ﬂ
' ——) |Teansformer | ——)) ’
g
_" Transformation
5 Instructions
5
5
E TransformerFactory tf = TransformerFactory .newinstance();
= StreamSource xsISS=new StreamSource(“source.xsl”);
StreamSource xmISS=new StreamSource(“source.xml”);
Transformer t=tf.newTrasformer(xslSS);
t.transform(xmiISS,new StreamResult(hew
FileOutputStream(“out.html”);
JO
36

18

18

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

xml.transform packages poﬂsAx

Package

javax.xml.transfo

Description

Defines the TransformerFactory and Transformer classes, which

8 rm you use to get a object capable of doing transformations. After
° creating a transformer object, you invoke its transform() method,
= providing it with an input (source) and output (result).
g
<
8 javax.xml.transfo = Classes to create input (source) and output (result) objects from a
- rm.dom DOM.
javax.xml.transfo = Classes to create input (source) from a SAX parser and output
rm.sax (result) objects from a SAX event handler.
javax.xml.transfo = Classes to create input (source) and output (result) objects from an
10 rm.stream I/O stream.
37
“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento
TrAX main classes o
javax.xml.transform.Transformer
transform(Source xmls, Result output)
©
E
5 javax.xml.transform.stream.StreamResult implements Result
¢ || javax.xml.transform.stream.StreamSource implements Source
=
javax.xml.transform.dom.DOMResult implements Result
javax.xml.transform. dom.DOMSource implements Source
JO
38

19

19

“Distributed systems design” - Laurea Specialistica in Informatica - Universita di Trento

Other Java-XML APIs

Marco Ronchetti - ©2005

Java Architecture for XML Binding (JAXB) provides a
convenient way to bind an XML schema to a
representation in Java code.

See also:

¢ JAX-WS

JAX-SWA

JAX- RPC

SAA]J

XML -Digital Signatures
* ecc.

