
1

1

Servlets

Servlets

Servlets are modules that extend Java-enabled web servers. For example, a

servlet might be responsible for taking data in an HTML order-entry form

and applying the business logic used to update a company's order

database.

Servlets are to servers what applets are to browsers. Unlike

applets, however, servlets have no graphical user interface.

For a full tutorial, see
http://java.sun.com/docs/books/tutorial/servlets/overview/index.html

2

2

Applets vs. Servlets

NOSIGraphics

javax.servlet.http.

HttpServlet

java.applet.AppletExtends:

service()handleEvent()Hearth:

NONOHas a main:

ServerClientRuns on:

Applet Servlet

Servlet Lifecycle

init()

destroy()

service(HttpServletRequest r,

HttpServletResponse p)

Called only the first time a servlet is

loaded into memory!

doGet()

doPost()

doXXX()

Used only when memory is freed

If the Servlet implements SingleThreadModel

there will be no mutithreading

3

3

Get vs Post

What are "Get" and "Post"?

Get and Post are methods used to send data to the server:
With the Get method, the browser appends the data onto the URL.
With the Post method, the data is sent as "standard input.“

Why Do I Care?

It's important for you to know which method you are using. The
Get method is the default, so if you do not specify a method, the
Get method will be used automatically.

The Get method has several disadvantages:

� There is a limit on the number of characters which can be sent to
the server, generally around 100 - 150 characters.

� Your user will see the "messy codes" when the data is sent.

service()

This code is part of the class HttpServlet
protected void service (HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException

{

String method = req.getMethod ();

if (method.equals ("GET")) {

long ifModifiedSince; long lastModified; long now;

ifModifiedSince = req.getDateHeader ("If-Modified-Since");

lastModified = getLastModified (req);

maybeSetLastModified (resp, lastModified);

if (ifModifiedSince == -1 || lastModified == -1) doGet (req, resp);

else {

now = System.currentTimeMillis ();

if (now < ifModifiedSince || ifModifiedSince < lastModified)

doGet (req, resp);

else

resp.sendError (HttpServletResponse.SC_NOT_MODIFIED);

}

4

4

service()

This code is part of the class HttpServlet
protected void service (HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException

{

String method = req.getMethod ();

if (method.equals ("GET")) {

long ifModifiedSince; long lastModified; long now;

ifModifiedSince = req.getDateHeader ("If-Modified-Since");

lastModified = getLastModified (req);

maybeSetLastModified (resp, lastModified);

if (ifModifiedSince == -1 || lastModified == -1) doGet (req, resp);

else {

now = System.currentTimeMillis ();

if (now < ifModifiedSince || ifModifiedSince < lastModified)

doGet (req, resp);

else

resp.sendError (HttpServletResponse.SC_NOT_MODIFIED);

}

service()

} else if (method.equals ("HEAD")) {

long lastModified;

lastModified = getLastModified (req);

maybeSetLastModified (resp, lastModified);

doHead (req, resp);

} else if (method.equals ("POST")) {

doPost (req, resp);

} else if (method.equals ("PUT")) {

doPut(req, resp);

} else if (method.equals ("DELETE")) {

doDelete(req, resp);

} else if (method.equals ("OPTIONS")) {

doOptions(req,resp);

} else if (method.equals ("TRACE")) {

doTrace(req,resp);

} else {

resp.sendError (HttpServletResponse.SC_NOT_IMPLEMENTED,

"Method '" + method + "' is not defined in RFC 2068");

}

}

5

5

A taste of servlet programming-1

public class SimpleServlet extends HttpServlet {

/** Handle the HTTP GET method by building a simple web page.

*/

public void doGet (HttpServletRequest request,
HttpServletResponse response) throws

ServletException, IOException {

PrintWriter out;

String title = "Simple Servlet Output";

A taste of servlet programming-2

// set content type and other response header fields first

response.setContentType("text/html");

// then write the data of the response

out = response.getWriter();
out.println("<HTML><HEAD><TITLE>");

out.println(title);

out.println("</TITLE></HEAD><BODY>");
out.println("<H1>" + title + "</H1>");

out.println("<P>This is output from

SimpleServlet.");

out.println("</BODY></HTML>");

out.close();

}

}

6

6

Forms (a recall)

See also: http://www.cs.tut.fi/~jkorpela/forms/

Accessibility
See http://jimthatcher.com/webcourse8.htm for accessibility
when using forms

http://jimthatcher.com/webcourse1.htm for
accessibility in general.

7

7

Forms
Give to the user the possibility to di

send information to the Web server

The FORM tag defines a form and has the following attributes:

•ACTION identifies the processing engine
•ENCTYPE specificies the MIME type used to pass data

to the server (Es. Text/html)

FORM contains the sub-tag:

•several tags for collecting data
•An INPUT tag must be of type SUBMIT for sending the data

•An INPUT can be of tye RESET to cancel all the gathered data

Form - input

<FORM method="POST" action="/cgi-bin/elabora">

Scrivi il tuo nome
<Input type="text" size“=25" maxlength="15“ name=“a”>

<Input type="submit" value="spedisci">

<Input type="reset" value="annulla">

</FORM>

Sends a url of type

http://…/cgi-bin/elabora?a=MarcoRonchetti&b=…

8

8

Form – input type=“radio”

<FORM method="POST" action="/cgi-bin/elabora">
Fai la tua scelta:

<Input type="radio" name="tipo"

value="auto" checked>Auto

<Input type="radio" name="tipo"

value="bus">Bus
<Input type="radio" name="tipo"

value="camion">Camion

<P><Input type="radio" name="colore"

value="rosso">Rosso

<Input type="radio" name="colore"
value="argento" checked>Argento</P>

<Input type="submit" value="spedisci">

</FORM>

Form – input type=“checkbox” - select

<FORM method="POST" action="/cgi-bin/elabora">
Fai la tua scelta:

<Input type="checkbox"

name="tipo" value="auto" checked>Auto

<Input type="checkbox"

name="tipo" value="bus">Bus
<Input type="checkbox"

name="tipo" value="camion">Camion

<P><Select name="colore">

<option>Rosso

<option selected>Argento
</select></P>

<Input type="submit" value="spedisci">

</FORM>

9

9

Form – textarea

<FORM method="POST" action="/cgi-bin/elabora">

Scrivi i tuoi commenti:

<Textarea

name="commenti" rows="4" columns="14">
Spiega in questo spazio la tua opinione

</TEXTAREA>

<Input type="submit" value="via!">

</FORM>

Notare gli spazi

Example

10

10

Esempio: ShowParameters

package coreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class ShowParameters extends HttpServlet {

public void doGet(HttpServletRequest request HttpServletResponse
response) throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Reading All Request Parameters";

out.println ("<HTML><HEAD><TITLE>" +title+ “</TITLE></HEAD>"
+

"<BODY BGCOLOR=\"#FDF5E6\">\n" +

"<H1 ALIGN=CENTER>" + title + "</H1>\n" +

"<TABLE BORDER=1 ALIGN=CENTER>\n" +

"<TR BGCOLOR=\"#FFAD00\">\n" +

"<TH>Parameter Name<TH>Parameter Value(s)");

Esempio: ShowParameters

Enumeration paramNames = request.getParameterNames();

while(paramNames.hasMoreElements()) {

String paramName = (String)paramNames.nextElement();

out.print("<TR><TD>" + paramName + "\n<TD>");

String[] paramValues = request.getParameterValues(paramName);

if (paramValues.length == 1) {

String paramValue = paramValues[0];

if (paramValue.length() == 0) out.println("<I>No Value</I>");

else out.println(paramValue);

} else {

out.println("");

for(int i=0; i<paramValues.length; i++) {out.println(""
+paramValues[i]); }

out.println("");

}

}

out.println("</TABLE>\n</BODY></HTML>");

}

11

11

Esempio: ShowParameters

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

doGet(request, response);

}

}

Esempio: ShowParameters
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>A Sample FORM using POST </TITLE>

</HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1 ALIGN="CENTER">A Sample FORM using POST</H1>

<FORM ACTION="/servlet/coreservlets.ShowParameters“
METHOD="POST”>

Item Number: <INPUT TYPE="TEXT" NAME="itemNum">

Quantity: <INPUT TYPE="TEXT" NAME="quantity">

Price Each: <INPUT TYPE="TEXT" NAME="price" VALUE="$">

<HR>

First Name: <INPUT TYPE="TEXT" NAME="firstName">

Last Name: <INPUT TYPE="TEXT" NAME="lastName">

Middle Initial: <INPUT TYPE="TEXT" NAME="initial">

Shipping Address:

<TEXTAREA NAME="address" ROWS=3 COLS=40></TEXTAREA>

12

12

Esempio: ShowParameters

Credit Card:

 <INPUT TYPE="RADIO" NAME="cardType“
VALUE="Visa">Visa

 <INPUT TYPE="RADIO" NAME="cardType"

VALUE="Master Card">Master Card

 <INPUT TYPE="RADIO" NAME="cardType"

VALUE="Amex">American Express

 <INPUT TYPE="RADIO" NAME="cardType“
VALUE="Discover">Discover

 <INPUT TYPE="RADIO" NAME="cardType"

VALUE="Java SmartCard">Java SmartCard

Credit Card Number:

<INPUT TYPE="PASSWORD" NAME="cardNum">

Repeat Credit Card Number:

<INPUT TYPE="PASSWORD" NAME="cardNum">

<CENTER><INPUT TYPE="SUBMIT" VALUE="Submit
Order"></CENTER>

</FORM>

</BODY>

</HTML>

Accessibility

13

13

Accessibility

See http://jimthatcher.com/webcourse8.htm for accessibility

when using forms

http://jimthatcher.com/webcourse1.htm for accessibility in general.

http://www.innovazione.gov.it/ita/normativa/pubblicazioni/2004_rapporto_comm_a
cc.pdf

What is Section 508?
The legislation referred to as "Section 508" is

actually an amendment to the Workforce
Rehabilitation Act of 1973. The amendment
was signed into law by President Clinton on
August 7, 1998. Section 508 requires that
electronic and information technology that is
developed or purchased by the Federal
Government is accessible by people with
disabilities.

Accessibility in Italy

Testo della legge:
- http://www.pubbliaccesso.gov.it/normative/legge_20040109_n4.htm

Vedi anche:
- http://www.cnipa.gov.it/site/it-IT/Attivit%C3%A0/

Commissioni_e_Gruppi_di_Lavoro_interministeriali/Accessibilit%C3%A0/

Rapporto 2004 della commissioneCommissione interministeriale permanente per
l’impiego delle ICT a favore delle categorie deboli o svantaggiate

- http://www.innovazione.gov.it/ita/normativa/pubblicazioni/2004_rapporto_comm_acc.pdf

Legge Stanca 9 gennaio 2004, n. 4

Disposizioni per favorire l'accesso dei
soggetti disabili agli strumenti informatici

14

14

WebApps
(Tomcat configuration)

Static pages

To let Tomcat serve static pages, we must define a “Web
Application”.

That is, in the Tomcat Document Root (by default
$CATALINA_HOME/webapps/) we must create a folder named
after our Web Application (e.g. myApp).

In that “myApp” folder, we MUST create a WEB-INF folder

(that can be empy).

In the myApp folder we can then depost the static html files.

On our Tomcat server, the URL for the hello.html file
becomes:

http://machine/port/myApp/hello.html

To actually see the webapp, we might have to restart Tomcat

myApp

hello.htmlWEB-INF

webapps

web.xml

15

15

Static pages

A web.xml file MUST be provided:
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN“

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

</web-app>

myApp

hello.htmlWEB-INF

webapps

web.xml

JSP pages

To let Tomcat serve JSP pages, we follow the same
procedure that we described for static pages.

In the myApp folder we can depost the JSP files.

On our Tomcat server, the URL for the hello.jsp file
becomes:

http://machine/port/myApp/hello.jsp

The WEB-INF directory is still empty.

To actually see the webapp, you might have to restart
Tomcat (depending on the version you have)

The same web.xml file as in the static case must be
provided.

myApp

hello.jspWEB-INF

webapps

web.xml

16

16

Servlets
To let Tomcat serve servlet, we need add some info. The compiled servlets (.class)
must be stored in a “classes” directory in WEB-INF.

Moreover, the web.xml file MUST contain at least:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<servlet-mapping>

<servlet-name>invoker</servlet-name>

<url-pattern>/magic/*</url-pattern>

</servlet-mapping>

</web-app>

The “magic” word is the servlet activation keyword (you can of course customize
this word). To execute the servlet called MyServlet.class, the URL will be:

http://machine/port/myApp/magic/MyServlet

Servlets

The web.xml file CAN contain many additional info.

For instance, it can contain a section defining an alias

name for the servlet:

…

<servlet>

<servlet-name>pippo</servlet-name>

<servlet-class>Servlet1</servlet-class>

</servlet>

…

In such case, the servlet called MyServlet.class

Can be activated ALSO by the URL:

http://machine/port/myApp/magic/pippo

myApp

web.xml

WEB-INF

webapps

classes

MyServlet.class

17

17

Dispatching, monitoring etc.

Dispatching

RequestDispatcher dispatch =

cntx.getRequestDispatcher("/SecondServlet");
dispatch.forward(req,res);

RequestDispatcher dispatch =

cntx.getRequestDispatcher("/SecondServlet");
dispatch.include(req,res);

18

18

Dispatching example

package servlets;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServlet;
import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.ServletContext;
import javax.servlet.RequestDispatcher;

public class SecondServlet extends HttpServlet {
public void doGet(HttpServletRequest req,HttpServletResponse res)
throws IOException,ServletException {

Printer out=res.getWriter();
System.out.println("Second Servlet Called");

}
}

Dispatching example
package servlets;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServlet;
import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.ServletContext;
import javax.servlet.RequestDispatcher;

public class FirstServlet extends HttpServlet {
public void doGet(HttpServletRequest req,HttpServletResponse res)
throws IOException,ServletException {
Printer out=res.getWriter();
out.println("First Servlet Called");
ServletConfig config = getServletConfig();
ServletContext cntx = config.getServletContext();
RequestDispatcher dispatch =

cntx.getRequestDispatcher("/SecondServlet");
dispatch.forward(req,res);

}
}

19

19

Dispatching example
<servlet>
<servlet-name>FirstServlet</servlet-name>
<servlet-class>servlets.FirstServlet</servlet-class>
</servlet>

<servlet>
<servlet-name>SecondServlet</servlet-name>
<servlet-class>servlets.SecondServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>FirstServlet</servlet-name>
<url-pattern>/firstservlet/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>SecondServlet</servlet-name>
<url-pattern>/SecondServlet/*</url-pattern>
</servlet-mapping>

Monitoring Servlets Lifecycle

ServletRequestAttribu
teEvent

ServletRequestAttributeListenerAttribute added,
removed, or
replaced

ServletRequestEventServletRequestListenerA servlet request
has started being
processed by Web
components

Request

HttpSessionBindingEv
ent

HttpSessionAttributeListenerAttribute added,
removed, or
replaced

HttpSessionEventHttpSessionListenerHttpSession
ActivationListener

Creation,
invalidation,
activation,
passivation, and
timeout

Session

ServletContextAttribu
teEvent

ServletContextAttributeListenerAttribute added,
removed, or
replaced

ServletContextEventServletContextListenerInitialization and
Destruction

Web
context

20

20

Monitoring Servlets Lifecycle - Example

/* File : ApplicationWatch.java */

import javax.servlet.ServletContextListener;

import javax.servlet.ServletContextEvent;

public class ApplicationWatch implements
ServletContextListener {

public static long applicationInitialized = 0L;

/* Application Startup Event */

public void contextInitialized(ServletContextEvent ce) {
applicationInitialized = System.currentTimeMillis(); }

/* Application Shutdown Event */

public void contextDestroyed(ServletContextEvent ce) {}

}

Monitoring Servlets Lifecycle - Example
/* File : SessionCounter.java */

import javax.servlet.http.HttpSessionListener;

import javax.servlet.http.HttpSessionEvent;

public class SessionCounter implements HttpSessionListener
{

private static int activeSessions = 0;

/* Session Creation Event */

public void sessionCreated(HttpSessionEvent se) {
activeSessions++; }

/* Session Invalidation Event */

public void sessionDestroyed(HttpSessionEvent se) {
if(activeSessions > 0) activeSessions--; }

public static int getActiveSessions() { return
activeSessions; }

}

21

21

Monitoring Servlets Lifecycle - Example
<!-- Web.xml -->

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Web Application 2.3//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.3.dtd">

<web-app>

<!-- Listeners -->

<listener>

<listener-class> com.stardeveloper.web.listener.SessionCounter
</listener-class>

</listener>

<listener>

<listener-class>
com.stardeveloper.web.listener.ApplicationWatch </listener-
class>

</listener>

</web-app>

Scope Objects

Page Web component in the JSP pagePageContext

Web component handling the requestServletRequestRequest

Web components handling requests that
belong to a session

HttpSessionSession

Web components within web context

servlet.getServletConfig().getServletCon
text

ServletContextWeb
context

Main Methods:
Object getAttribute(String name)
void setAttribute(String name, Object o)
Enumeration getAttributeNames()

22

22

Filters (javax.servlet.filter)

Other classes that preprocess/postprocess request/response

A filter is an object than perform filtering tasks on either the request to a
resource (a servlet or static content), or on the response from a resource,
or both.

Filters perform filtering in the doFilter method. Every Filter has access to a
FilterConfig object from which it can obtain its initialization parameters, a
reference to the ServletContext which it can use, for example, to load
resources needed for filtering tasks.

Filters are configured in the deployment descriptor of a web application

Examples that have been identified for this design are
1) Authentication Filters
2) Logging and Auditing Filters
3) Image conversion Filters
4) Data compression Filters
5) Encryption Filters
6) Tokenizing Filters
7) Filters that trigger resource access events
8) XSL/T filters
9) Mime-type chain Filter

