Servlets

Servlets

Servlets are modules that extend Java-enabled web servers. For example, a
servlet might be responsible for taking data in an HTML order-entry form
and applying the business logic used to update a company's order

database.

| Order-Entry Client l—.—| Order-Entry Servlet Inventory
Datahase

m— L J

1 — HTTP

R Server

Servlets are to servers what applets are to browsers. Unlike
applets, however, servlets have no graphical user interface.

For a full tutorial, see

Applets vs. Servlets

Applet Servlet
Runs on: Client Server
Has a main: NO NO
Extends: java.applet.Applet javax.servlet.http.
HttpServlet
Graphics SI NO
Hearth: handleEvent() service()

Servlet Lifecycle

Called only the first time a servlet is
aded into memory!

If the Servlet implements SingleThreadModel
there will be no mutithreading

_ Used only when memory is freed

Get vs Post

What are "Get" and "Post"?

Get and Post are methods used to send data to the server:
With the Get method, the browser appends the data onto the URL.
With the Post method, the data is sent as "standard input.®

Why Do I Care?

It's important for you to know which method you are using. The
Get method is the default, so if you do not specify a method, the
Get method will be used automatically.

The Get method has several disadvantages:

o There is a limit on the number of characters which can be sent to
the server, generally around 100 - 150 characters.

o Your user will see the "messy codes" when the data is sent.

service()

This code is part of the class HttpServlet

protected void service (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException
{
String method = req.getMethod ();
if (method.equals ("GET")) {
long ifModifiedSince; long lastModified; long now;
ifModifiedSince = req.getDateHeader ("If-Modified-Since");
lastModified = getLastModified (req);
maybeSetLastModified (resp, lastModified);
if (ifModifiedSince == -1 || lastModified == -1) doGet (req, resp);
else {
now = System.currentTimeMillis ();
if (now < ifModifiedSince || ifModifiedSince < lastModified)
doGet (req, resp);
else
resp.sendError (HttpServietResponse.SC_NOT_MODIFIED);

service()

This code is part of the class HttpServlet

protected void service (HttpServietRequest req, HttpServietResponse resp)
throws ServletException, IOException
{
String method = req.getMethod ();
if (method.equals ("GET")) {
long ifModifiedSince; long lastModified; long now;
ifModifiedSince = req.getDateHeader ("If-Modified-Since");
lastModified = getLastModified (req);
maybeSetLastModified (resp, lastModified);
if (ifModifiedSince == -1 || lastModified == -1) doGet (req, resp);
else {
now = System.currentTimeMillis ();
if (now < ifModifiedSince || ifModifiedSince < lastModified)
doGet (req, resp);
else
resp.sendError (HttpServietResponse.SC_NOT_MODIFIED);

service()

} else if (method.equals ("HEAD")) {
long lastModified;
lastModified = getLastModified (req);
maybeSetLastModified (resp, lastModified);
doHead (req, resp);
} else if (method.equals ("POST")) {
doPost (req, resp);
} else if (method.equals ("PUT")) {
doPut(req, resp);
} else if (method.equals ("DELETE")) {
doDelete(req, resp);
} else if (method.equals ("OPTIONS")) {
doOptions(req,resp);
} else if (method.equals ("TRACE")) {
doTrace(req,resp);
} else {
resp.sendError (HttpServletResponse.SC_NOT_IMPLEMENTED,
"Method '" + method + "' is not defined in RFC 2068");

A taste of servlet programming-1

public class SimpleServilet extends HttpServlet {
/** Handle the HTTP GET method by building a simple web page.
*/
public void doGet (HttpServietRequest request,
HttpServietResponse response) throws
ServiletException, IOException {

PrintWriter out;
String title = "Simple Serviet Output";

A taste of servlet programming-2

// set content type and other response header fields first

response.setContentType("text/html");
// then write the data of the response

out = response.getWriter();
out.printin("<HTML><HEAD><TITLE>");

out.printin(title);

out.printin("</TITLE></HEAD><BODY>");
out.printin("<H1>" + title + "</H1>");

out.printin("<P>This is output from

SimpleServlet.");
out.printin("</BODY></HTML>");
out.close();

Forms (a recall)

See also:

Accessibility

See http://jimthatcher.com/webcourse8.htm for accessibility
when using forms

http://jimthatcher.com/webcoursel.htm for
accessibility in general.

Forms

Give to the user the possibility to di
send information to the Web server

The FORM tag defines a form and has the following attributes:
*ACTION identifies the processing engine
*ENCTYPE specificies the MIME type used to pass data
to the server (Es. Text/html)

FORM contains the sub-tag:
sseveral tags for collecting data
*An INPUT tag must be of type SUBMIT for sending the data
*An INPUT can be of tye RESET to cancel all the gathered data

Form - input

<FORM method="POST" action="/cgi-bin/elabora">
Scrivi il tuo nome
<Input type="text" size“=25" maxlength="15“ name="a">
<Input type="submit" value="spedisci">
<Input type="reset" value="annulla">

</FO R M > 3 C:AWINDOWS\Desktop\prova.html - Microsoft Internet Explorer - [... [E[=]
J File Modifica “isualizea Preferti Stumenti 2 |
[¢ -2 BEAAEIE-IE -E
[~ |
Scriwi il tuo nome I spedisci I annulla |
o

Sends a url of type
http://.../cgi-bin/elabora?a=MarcoRonchetti&b=...

Form — input type=*“radio”

<FORM method="POST" action="/cgi-bin/elabora">
Fai la tua scelta:
<Input type="radio" name="tipo"

value="auto" checked>Auto 2 C:\WINDOWS\Deskto... [I[S] K3

<Input type="radio" name="tipo" || Be Hediea Vewszs 7|
value="bus">Bus IR A MG

_ll H " _ll H " ﬂ
<Ir|3put t_yp?_ radlp name="tipo Fai la tua soelta:
value="camion">Camion . & Auto

<P><Input type="radio" name="colore" |+ Bus
" " s O Camion
value="rosso">Rosso

<Input type="radio" name="colore" Rosso @ Argento

value="argento" checked>Argento</P> Coperion |

<Input type="submit" value="spedisci"> [spedes | [
</FORM>

Form — input type=*“checkbox” - select

<FORM method="POST" action="/cgi-bin/elabora’>
Fai la tua scelta: 3'“' =l
<Input type="checkbox" -2
name="tipo" value="auto" checked>Auto [3
" " Fai la tua scelta
<Input type="checkbox . Bl g
'Y 1] _n 1] o M Bus 2 C:\WIND O [H[s] B3
name="tipo" value="bus">Bus CEe He Modica »
<Input type="checkbox"
name="tipo" value="camion">Camion _
<P><Select name="colore"> P ek
<option>Rosso . ;2
<option selected>Argento T
</select></P>
<Input type="submit" value="spedisci">
</FORM> =

Form — textarea

<FORM method="POST" action="/cgi-bin/elabora">
Scrivi i tuoi commenti:
<Textarea
name="commenti" rows="4" columns="14">
Spiega in questo spazio la tua opinione

</TEXTAREA> : :
i " - - Notare gli spazi
<Input type="submit" value="via!">
</FO R M> 3 C:\WINDOWS\D esktopiprova.ht Yiosoft Internet .. [E[=]
J File Modfica Visuslizza Prefe Umenti 2 it
[7 QR uld B S 5
) [
/Spiega in gquesto ;I
spgz:?.a la tua
Scrivii tuol commentt: ’ Ll
H
| |

Example

Esempio: ShowParameters

package coreserviets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class ShowParameters extends HttpServlet {

public void doGet(HttpServletRequest request HttpServietResponse
response) throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String title = "Reading All Request Parameters";

out.printin ("<HTML><HEAD><TITLE>" +title+ “</TITLE></HEAD>"
+

"<BODY BGCOLOR=\"#FDF5E6\">\n" +

"<H1 ALIGN=CENTER>" + title + "</H1>\n" +
"<TABLE BORDER=1 ALIGN=CENTER>\n" +

"<TR BGCOLOR=\"#FFADOO\">\n" +
"<TH>Parameter Name<TH>Parameter Value(s)");

Esempio: ShowParameters

Enumeration paramNames = request.getParameterNames();
while(paramNames.hasMoreElements()) {
String paramName = (String)paramNames.nextElement();
out.print("<TR><TD>" + paramName + "\n<TD>");
String[] paramValues = request.getParameterValues(paramName);
if (paramValues.length == 1) {
String paramValue = paramValues[0];
if (paramValue.length() == 0) out.printin("<I>No Value</I>");
else out.printin(paramValue);
} else {
out.printin("");

for(int i=0; i<paramValues.length; i++) {out.printin(""
+paramValues[i]); }

out.printin("");
by
by
out.printin("</TABLE>\n</BODY></HTML>");

}

10

10

Esempio: ShowParameters

public void doPost(HttpServietRequest request,
HttpServietResponse response)
throws ServietException, IOException {
doGet(request, response);
by
by

Esempio: ShowParameters

<I!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>A Sample FORM using POST </TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">A Sample FORM using POST</H1>

<FORM ACTION="/servlet/coreserviets.ShowParameters"
METHOD="POST">

Item Number: <INPUT TYPE="TEXT" NAME="itemNum">

Quantity: <INPUT TYPE="TEXT" NAME="quantity">

Price Each: <INPUT TYPE="TEXT" NAME="price" VALUE="$">

<HR>

First Name: <INPUT TYPE="TEXT" NAME="firstName">

Last Name: <INPUT TYPE="TEXT" NAME="lastName">

Middle Initial: <INPUT TYPE="TEXT" NAME="initial">

Shipping Address:

<TEXTAREA NAME="address" ROWS=3 COLS=40></TEXTAREA>

11

11

Esempio: ShowParameters

Credit Card:

 <INPUT TYPE="RADIO" NAME="cardType"
VALUE="Visa">Visa

 <INPUT TYPE="RADIO" NAME="cardType"
VALUE="Master Card">Master Card

 <INPUT TYPE="RADIO" NAME="cardType"
VALUE="Amex">American Express

 <INPUT TYPE="RADIO" NAME="cardType"
VALUE="Discover">Discover

 <INPUT TYPE="RADIO" NAME="cardType"
VALUE="Java SmartCard">Java SmartCard

Credit Card Number:

<INPUT TYPE="PASSWORD" NAME="cardNum">

Repeat Credit Card Number:

<INPUT TYPE="PASSWORD" NAME="cardNum">

<CENTER><INPUT TYPE="SUBMIT" VALUE="Submit
Order"></CENTER>

</FORM>
</BODY>
</HTML>

Accessibility

12

12

ACCGSSIblhtY What is Section 508?

The legislation referred to as "Section 508" is
actually an amendment to the Workforce
Rehabilitation Act of 1973. The amendment
was signed into law by President Clinton on
August 7, 1998. Section 508 requires that
electronic and information technology that is
developed or purchased by the Federal
Government is accessible by people with
disabilities.

See http://jimthatcher.com/webcourse8.htm for accessibility
when using forms

http://jimthatcher.com/webcoursel.htm for accessibility in general.

http://www.innovazione.gov.it/ita/normativa/pubblicazioni/2004_rapporto_comm_a
cc.pdf

Accessibility in Italy [Legge Stanca 9 gennaio 2004, n. 4

Disposizioni per favorire I'accesso dei
soggetti disabili agli strumenti informatici

Testo della legge:
- http://www.pubbliaccesso.gov.it/normative/legge_20040109_n4.htm

Vedi anche:
- http://www.cnipa.gov.it/site/it-IT/Attivit%C3%A0/
Commissioni_e_Gruppi_di_Lavoro_interministeriali/Accessibilit%C3%A0/

Rapporto 2004 della commissioneCommissione interministeriale permanente per
I'impiego delle ICT a favore delle categorie deboli o svantaggiate
http://www.innovazione.gov.it/ita/normativa/pubblicazioni/2004_rapporto_comm_acc.pdf

13

13

WebApps
(Tomcat configuration)

Static pages

To let Tomcat serve static pages, we must define a “Web
Application”. webapps

That is, in the Tomcat Document Root (by default
$CATALINA_HOME/webapps/) we must create a folder named ‘
after our Web Application (e.g. myApp).

myApp

In that “myApp” folder, we MUST create a WEB-INF folder

(that can be empy). ,_D/ ‘
WEB-INF | hello.html

In the myApp folder we can then depost the static html files.

On our Tomcat server, the URL for the hello.html file
becomes: web.xml

http://machine/port/myApp/hello.html

To actually see the webapp, we might have to restart Tomcat

14

14

Static pages

A web.xml file MUST be provided:
<?xml version="1.0" encoding="1S0-8859-1"?>
<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN*

"http://java.sun.com/dtd/web-app_2 3.dtd">
<web-app>
</web-app>

webapps

myApp

v

WEB-INF hello.html

s

web.xml

JSP pages

To let Tomcat serve JSP pages, we follow the same
procedure that we described for static pages.

In the myApp folder we can depost the JSP files.

On our Tomcat server, the URL for the hello.jsp file
becomes:

http://machine/port/myApp/hello.jsp
The WEB-INF directory is still empty.

To actually see the webapp, you might have to restart
Tomcat (depending on the version you have)

The same web.xml file as in the static case must be
provided.

webapps

myApp

vy

wEB-INF | hello.jsp

.

web.xml

15

15

Servlets

To let Tomcat serve servlet, we need add some info. The compiled servlets (.class)
must be stored in a “classes” directory in WEB-INF.

Moreover, the web.xml file MUST contain at least:
<?xml version="1.0" encoding="1S0-8859-1"?>
<IDOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
<servlet-mapping>
<servlet-names>invoker</servlet-name>
<url-pattern>/magic/*</url-pattern>
</servlet-mapping>
</web-app>

The “magic” word is the servlet activation keyword (you can of course customize
this word). To execute the servlet called MyServlet.class, the URL will be:

http://machine/port/myApp/magic/MyServlet

Servlets
The web.xml file CAN contain many additional info.
For instance, it can contain a section defining an alias webapps
name for the servlet:
<serviet> ‘
<servlet-name>pippo</serviet-name> myApp

<servlet-class>Servlet1</servlet-class>

</servlet> / l/

WEB-INF

In such case, the servlet called MyServlet.class T \

Can be activated ALSO by the URL.:
http://machine/port/myApp/magic/pippo web.xml | classes

MyServlet.class

16

16

Dispatching, monitoring etc.

Dispatching

RequestDispatcher dispatch =

cntx.getRequestDispatcher("/SecondServiet");
dispatch.forward(req,res);

RequestDispatcher dispatch =

cntx.getRequestDispatcher("/SecondServiet");
dispatch.include(req,res);

17

17

Dispatching example

package servlets;

Import javax.servlet.http.HttpServietRequest;
import javax.servlet.http.HttpServietResponse;
import javax.servlet.http.HttpServiet;

import javax.servlet.ServletConfig;

import javax.servlet.ServletContext;

import java.io.lOException;

import javax.servlet.ServietException;

import Javax.servlet.ServletContext;

import javax.serviet.RequestDispatcher;

public class SecondServlet extends HttpServlet {
public void doGet(HttpServletRequest req,HttpServietResponse res)

throws IOException,ServietException {
Printer out=res.getWriter();

System.out.printin("Second Servlet Called");

Dispatching example

package servlets;
import javax.servlet.http.HttpServietRequest;
import javax.servlet.http.HttpServiletResponse;
import javax.servlet.http.HttpServlet;
import javax.servlet.ServletConfig;
import javax.servlet.ServietContext;
import java.io.IOException; .
import javax.servlet.ServletException;
import javax.servlet.ServietContext;
import javax.servlet.RequestDispatcher;

public class FirstServlet extends HttpServiet {

public void doGet(HttpServletRequest req,HttpServietResponse res)

throws IOException,ServiletException {
Printer out=res.getWriter();
out.printin("First Servlet Called");
ServletConfig config = getServletConfig();
ServietContext cntx = config.getServietContext();
RequestDispatcher dispatch =

cntx.]?etRequestDispatcher("/SecondServIet");

dispatch.forward(req,res);

18

18

Dispatching example

<serviet>
<servlet-name>FirstServlet</serviet-name>
<servlet-class>serviets.FirstServlet</servlet-class>
</serviet>

<serviet>
<servlet-name>SecondServiet</servlet-name>
<servlet-class>serviets.SecondServiet</servlet-class>
</serviet>

<servlet-mapping>
<servlet-name>FirstServlet</serviet-name>
<url-pattern> /firstservlet/ *</url-pattern>
</servlet-mapping>

<serviet-mapping>
<servlet-name>SecondServlet</servlet-name>
<url-pattern>/SecondServlet/*</url-pattern>
</serviet-mapping>

Monitoring Servlets Lifecycle

Web Initialization and ServletContextListener ServletContextEvent
context | Destruction

Attribute added, ServletContextAttributelListener | ServletContextAttribu

removed, or teEvent
replaced
Session | Creation, HttpSessionListenerHttpSession | HttpSessionEvent
invalidation, ActivationListener
activation,
passivation, and
timeout
Attribute added, HttpSessionAttributeListener HttpSessionBindingEv
removed, or ent
replaced
Request | A servlet request ServletRequestListener ServletRequestEvent

has started being
processed by Web

components

Attribute added, ServletRequestAttributeListener | ServletRequestAttribu
removed, or teEvent

replaced

19

19

Monitoring Servlets Lifecycle - Example

/* File : ApplicationWatch.java */
import javax.servlet.ServiletContextListener;
import javax.servlet.ServietContextEvent;

public class ApplicationWatch implements
ServiletContextListener {

public static long applicationInitialized = OL;
/* Application Startup Event */

public void contextInitialized(ServietContextEvent ce) {
applicationInitialized = System.currentTimeMillis(); }

/* Application Shutdown Event */
public void contextDestroyed(ServietContextEvent ce) {}

3

Monitoring Servlets Lifecycle - Example

/* File : SessionCounter.java */

import javax.servlet.http.HttpSessionListener;

import javax.serviet.http.HttpSessionEvent;

public class SessionCounter implements HttpSessionListener

{

private static int activeSessions = 0;
/ * Session Creation Event */

public void sessionCreated(HttpSessionEvent se) {
activeSessions++; }

/ * Session Invalidation Event */

public void sessionDestroyed(HttpSessionEvent se) {
if(activeSessions > 0) activeSessions--; }

public static int getActiveSessions() { return
activeSessions; }

3

20

20

Monitoring Servlets Lifecycle - Example

<I-- Web.xml -->
<?xml version="1.0" encoding="IS0-8859-1"?>

<IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Web Application 2.3//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.3.dtd">

<web-app>
<I-- Listeners -->
<listener>

<listener-class> com.stardeveloper.web.listener.SessionCounter
</listener-class>

</listener>
<listener>

<listener-class>
com.stardeveloper.web.listener.ApplicationWatch </listener-
class>

</listener>
</web-app>

Scope Objects

Web ServletContext Web components within web context

context .getServletConfig().getServletCon
text

Session HttpSession Web components handling requests that

belong to a session

Request ServletRequest Web component handling the request

Page PageContext Web component in the JSP page

Main Methods:

Object getAttribute(String name)

void setAttribute(String name, Object o)
Enumeration getAttributeNames()

21

21

Filters (javax.servlet.filter)

Other classes that preprocess/postprocess request/response

A filter is an object than perform filtering tasks on either the request to a
resgutrhce ia servlet or static content), or on the response from a resource,
or both.

Filters perform filtering in the doFilter method. Every Filter has access to a
FilterConfig object from which it can obtain its initialization parameters, a
reference to the ServietContext which it can use, for example, to load
resources needed for filtering tasks.

Filters are configured in the deployment descriptor of a web application

Examples that have been identified for this design are
Authentication Filters

Logging and Auditing Filters

Image conversion Filters

Data compression Filters

Encryption Filters

Tokenizing Filters

Filters that trigger resource access events
XSL/T filters

Mime-type chain Filter

OONAOUVTAWN =

22

22

