
1
1

SERVLETS:
Dispatching, monitoring, filtering

Dispatching

RequestDispatcher dispatch =
 cntx.getRequestDispatcher("/SecondServlet");

 dispatch.forward(req,res);

RequestDispatcher dispatch =
 cntx.getRequestDispatcher("/SecondServlet");

 dispatch.include(req,res);

2
2

Dispatching example

package servlets;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServlet;
import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.ServletContext;
import javax.servlet.RequestDispatcher;

 public class SecondServlet extends HttpServlet {
 public void doGet(HttpServletRequest req,HttpServletResponse res)

 throws IOException,ServletException {
 Printer out=res.getWriter();

 System.out.println("Second Servlet Called");
 }
}

Dispatching example
package servlets;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServlet;
import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.ServletContext;
import javax.servlet.RequestDispatcher;

 public class FirstServlet extends HttpServlet {
public void doGet(HttpServletRequest req,HttpServletResponse res)
throws IOException,ServletException {
 Printer out=res.getWriter();

 out.println("First Servlet Called");
 ServletConfig config = getServletConfig();

 ServletContext cntx = config.getServletContext();
 RequestDispatcher dispatch =

 cntx.getRequestDispatcher("/SecondServlet");
 dispatch.forward(req,res);
}

}

3
3

Dispatching example
 <servlet>

<servlet-name>FirstServlet</servlet-name>
<servlet-class>servlets.FirstServlet</servlet-class>
</servlet>

<servlet>
<servlet-name>SecondServlet</servlet-name>
<servlet-class>servlets.SecondServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>FirstServlet</servlet-name>
<url-pattern>/firstservlet/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>SecondServlet</servlet-name>
<url-pattern>/SecondServlet/*</url-pattern>
</servlet-mapping>

Monitoring Servlets Lifecycle

ServletRequestAttribu
teEvent

ServletRequestAttributeListenerAttribute added,
removed, or
replaced

ServletRequestEventServletRequestListenerA servlet request
has started being
processed by Web
components

Request

HttpSessionBindingEv
ent

HttpSessionAttributeListenerAttribute added,
removed, or
replaced

HttpSessionEventHttpSessionListenerHttpSession
ActivationListener

Creation,
invalidation,
activation,
passivation, and
timeout

Session

ServletContextAttribu
teEvent

ServletContextAttributeListenerAttribute added,
removed, or
replaced

ServletContextEventServletContextListenerInitialization and
Destruction

Web
context

4
4

Monitoring Servlets Lifecycle - Example

/* File : ApplicationWatch.java */
import javax.servlet.ServletContextListener;
import javax.servlet.ServletContextEvent;
public class ApplicationWatch implements

ServletContextListener {
public static long applicationInitialized = 0L;
/* Application Startup Event */
public void contextInitialized(ServletContextEvent ce) {

applicationInitialized = System.currentTimeMillis(); }
/* Application Shutdown Event */
public void contextDestroyed(ServletContextEvent ce) {}
}

Monitoring Servlets Lifecycle - Example
 /* File : SessionCounter.java */

import javax.servlet.http.HttpSessionListener;
import javax.servlet.http.HttpSessionEvent;
public class SessionCounter implements HttpSessionListener

{
private static int activeSessions = 0;
/* Session Creation Event */
public void sessionCreated(HttpSessionEvent se) {

activeSessions++; }
/* Session Invalidation Event */
public void sessionDestroyed(HttpSessionEvent se) {

if(activeSessions > 0) activeSessions--; }
public static int getActiveSessions() { return activeSessions;

}
}

5
5

Monitoring Servlets Lifecycle - Example
 <!-- Web.xml -->

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD

Web Application 2.3//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.3.dtd">

<web-app>
<!-- Listeners -->
<listener>

<listener-class> com.stardeveloper.web.listener.SessionCounter
</listener-class>

</listener>
<listener>

<listener-class>
com.stardeveloper.web.listener.ApplicationWatch </listener-
class>

</listener>
</web-app>

Scope Objects

Page Web component in the JSP pagePageContext

Web component handling the requestServletRequestRequest

Web components handling requests that
belong to a session

HttpSessionSession

Web components within web context
servlet.getServletConfig().getServletCon
text

ServletContextWeb
context

Main Methods:
Object getAttribute(String name)
void setAttribute(String name, Object o)
Enumeration getAttributeNames()

6
6

AOP

The programming paradigms of aspect-oriented programming
(AOP), and aspect-oriented software development (AOSD)
attempt to aid programmers in the separation of concerns,
specifically cross-cutting concerns, as an advance in
modularization.

Logging and authorization offer two examples of crosscutting
concerns:
a logging strategy necessarily affects every single logged part
of the system. Logging thereby crosscuts all logged classes and
methods.

Same is true for authorization.

Filters (javax.servlet.filter)

Other classes that preprocess/postprocess request/response

A filter is an object than perform filtering tasks on either the request to a
resource (a servlet or static content), or on the response from a resource,
or both.

Filters perform filtering in the doFilter method. Every Filter has access to a
FilterConfig object from which it can obtain its initialization parameters, a
reference to the ServletContext which it can use, for example, to load
resources needed for filtering tasks.

Filters are configured in the deployment descriptor of a web application

Examples that have been identified for this design are
1) Authentication Filters
2) Logging and Auditing Filters
3) Image conversion Filters
4) Data compression Filters
5) Encryption Filters
6) Tokenizing Filters
7) Filters that trigger resource access events
8) XSL/T filters
9) Mime-type chain Filter

http://java.sun.com/products/servlet/Filters.html

7
7

Filters
Filters are important for a number of reasons. First, they provide the
ability to encapsulate recurring tasks in reusable units.

Second, filters can be used to transform the response from a servlet or
a JSP page. A common task for the web application is to format data
sent back to the client. Increasingly the clients require formats (for
example, WML) other than just HTML.

Filters
Filters can perform many different types of functions.
 * Authentication-Blocking requests based on user identity.
 * Logging and auditing-Tracking users of a web application.
 * Image conversion-Scaling maps, and so on.
 * Data compression-Making downloads smaller.
 * Localization-Targeting the request and response to a particular locale.
 * XSL/T transformations of XML content-Targeting web application responses to
more that one type of client.

There are many more, such as encryption, tokenizing, triggering
resource access events, mime-type chaining, and caching.

