SERVLETS:
Dispatching, monitoring, filtering

Dispatching

RequestDispatcher dispatch =

cntx.getRequestDispatcher("/SecondServlet");
dispatch.forward(req,res);

RequestDispatcher dispatch =

cntx.getRequestDispatcher("/SecondServlet");
dispatch.include(req,res);

Dispatching example

package servlets;

import javax.servlet.http.HttpServietRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServlet;

import javax.servlet.ServietConfig;

import javax.servlet.ServietContext;

import java.io.lOException;

import javax.servlet.ServietException;

import javax.servlet.ServietContext;

import javax.servlet.RequestDispatcher;

public class SecondServlet extends HttpServlet {
public void doGet(HttpServiletRequest req,HttpServietResponse res)

throws IOException,ServletException {
Printer out=res.getWriter();

System.out.printin("Second Serviet Called");

Dispatching example

package servlets;
import javax.servlet.http.HttpServietRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServlet;
import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.ServletContext;
import javax.servlet.RequestDispatcher;

public class FirstServlet extends HttpServiet {
public void doGet(HttpServietRequest req,HttpServietResponse res)
throws IOException,ServiletException {
Printer out=res.getWriter();

out.printin("First Servlet Called");

ServletConfig config = getServletConfig();
ServletContext cntx = config.getServietContext();
RequestDispatcher dispatch =

cntx.getRequestDispatcher("/SecondServiet");
dispatch.forward(req,res);

Dispatching example

<serviet>
<servlet-name>FirstServlet</serviet-name>

<servlet-class>servlets.FirstServilet</servilet-class>

</servlet>

<serviet>
<servlet-name>SecondServiet</servlet-name>
<servilet-class>servlets.SecondServiet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>FirstServlet</servlet-name>
<url-pattern> /firstservilet/ * < /url-pattern>
</serviet-mapping>

<servlet-mapping>
<servlet-name>SecondServlet</servlet-name>
<url-pattern>/SecondServiet/*</url-pattern>

</serviet-mapping>

Monitoring Servlets Lifecycle

Web Initialization and ServletContextListener ServletContextEvent
context | Destruction
Attribute added, ServletContextAttributeListener | ServletContextAttribu
removed, or teEvent
replaced
Session | Creation, HttpSessionListenerHttpSession | HttpSessionEvent
invalidation, ActivationListener
activation,
passivation, and
timeout
Attribute added, HttpSessionAttributeListener HttpSessionBindingEv
removed, or ent
replaced
Request | A servlet request ServletRequestListener ServletRequestEvent
has started being
processed by Web
components
Attribute added, ServletRequestAttributeListener | ServletRequestAttribu
removed, or teEvent
replaced

Monitoring Servlets Lifecycle - Example

/* File : ApplicationWatch.java */
import javax.servlet.ServietContextListener;
import javax.servilet.ServietContextEvent;

public class ApplicationWatch implements
ServletContextListener {

public static long applicationInitialized = OL;
/* Application Startup Event */

public void contextInitialized(ServietContextEvent ce) {
applicationInitialized = System.currentTimeMillis(); }

/* Application Shutdown Event */
public void contextDestroyed(ServietContextEvent ce) {3}

}

Monitoring Servlets Lifecycle - Example

/ * File : SessionCounter.java */

import javax.servlet.http.HttpSessionListener;

import javax.servlet.http.HttpSessionEvent;

public class SessionCounter implements HttpSessionListener

{

private static int activeSessions = 0;
/ * Session Creation Event */

public void sessionCreated(HttpSessionEvent se) {
activeSessions++; }

/* Session Invalidation Event */

public void sessionDestroyed(HttpSessionEvent se) {
if(activeSessions > 0) activeSessions--; }

public static int getActiveSessions() { return activeSessions;

¥
¥

Monitoring Servlets Lifecycle - Example

<!-- Web.xml -->
<?xml version="1.0" encoding="IS0-8859-1"?>

<IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Web Application 2.3//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.3.dtd">

<web-app>
<!-- Listeners -->
<listener>

<listener-class> com.stardeveloper.web.listener.SessionCounter
</listener-class>

</listener>
<listener>

<listener-class>
com.stardeveloper.web.listener.ApplicationWatch </listener-
class>

</listener>
</web-app>

Scope Objects

Web ServletContext Web components within web context

context .getServletConfig().getServletCon
text

Session HttpSession Web components handling requests that

belong to a session

Request ServletRequest Web component handling the request

Page PageContext " | Web component in the JSP page

Main Methods:

Object getAttribute(String name)

void setAttribute(String name, Object o)
Enumeration getAttributeNames()

The programming paradigms of aspect-oriented programming
(AOP), and aspect-oriented software development (AOSD)
attempt to aid programmers in the separation of concerns,
specifically cross-cutting concerns, as an advance in
modularization.

Logging and authorization offer two examples of crosscutting
concerns:

a logging strategy necessarily affects every single logged part
of the system. Logging thereby crosscuts all logged classes and
methods.

Same is true for authorization.

Other classes that preprocess/postprocess request/response

A filter is an object than perform filtering tasks on either the request to a
resgurr::e %a servlet or static content), or on the response from a resource,
or both.

Filters perform filtering in the doFilter method. Every Filter has access to a
FilterConfig object from which it can obtain its initialization parameters, a
reference to the ServletContext which it can use, for example, to load
resources needed for filtering tasks.

Filters are configured in the deployment descriptor of a web application

Examples that have been identified for this design are
1) Authentication Filters

Logging and Auditing Filters

Image conversion Filters

Data compression Filters

Encryption Filters

Tokenizing Filters

Filters that trigger resource access events

XSL/T filters

Mime-type chain Filter

OWONOVILAWN

http://java.sun.com/products/servlet/Filters.html

Filters

Filters are important for a number of reasons. First, they provide the
ability to encapsulate recurring tasks in reusable units.

Second, filters can be used to transform the response from a servlet or
a JSP page. A common task for the web application is to format data
sent back to the client. Increasingly the clients require formats (for
example, WML) other than just HTML.

Filters

Filters can perform many different types of functions.

* Authentication-Blocking requests based on user identity.

* Logging and auditing-Tracking users of a web application.

* Image conversion-Scaling maps, and so on.

* Data compression-Making downloads smaller.

* Localization-Targeting the request and response to a particular locale.

* XSL/T transformations of XML content-Targeting web application responses to
more that one type of client.

There are many more, such as encryption, tokenizing, triggering
resource access events, mime-type chaining, and caching.

