
1

Simple MVC

An example: join.jsp
<%@ page language="java" %>
<%@ page import="business.util.Validation" %>
<%@ page import="business.db.MailingList" %>
<%
String error = "";
String email = request.getParameter("email");

// do we have an email address
if( email!=null ) {
    // validate input...
    if( business.util.Validation.isValidEmail(email) ) {
        // store input...
        try {
            business.db.MailingList.AddEmail(email);
        } catch (Exception e) {
            error = "Error adding email address to system.  " + e;
        }



2

join.jsp – part 2
if( error.length()==0 ) {
%>
            // redirect to welcome page...
            <jsp:forward page="welcome.html"/>
<%
        }
    } else {
        // set error message and redisplay page
        error = email + " is not a valid email address, try again.";
    }
} else {
    email = "";
}
%>

join.jsp – part 3

<html>
<head>
<title>Join Mailing List</title>
</head>
<body>
<font color=red><%=error%></font><br>
<h3>Enter your email to join the group</h3>
<form action="join.jsp" name="joinForm">
    <input name="email" id="email" value=<%=email%>></input>
    <input type=submit value="submit">
</form>
</body>
</html>



3

An example – comment

 * Heavy HTML and Java coupling
      The coder of the JSP file must be both a page designer and a Java

developer. The result is often either terrible Java code or an ugly page, or
sometimes both.

    * Java and JavaScript blur
      As the pages become larger, there can be a tendency to implement some

JavaScript. When the JavaScript appears in a page, the script can get
confused with the Java code. An example of a possible point of confusion is
using client-side JavaScript to validate the email field.

    * Embedded flow logic
      To understand the entire flow of the application, you have to navigate all

of the pages. Imagine the spaghetti logic on a 100-page Web site.
    * Debugging difficulties
      In addition to being ugly to look at, HTML tags, Java code, and JavaScript

code all in one page makes it difficult to debug problems.
    * Tight coupling
      Changes to business logic or data means possibly touching every page

involved.
    * Aesthetics
      Visually, in large pages, this type of coding looks messy.

Struts jsp tag libs

<form:form action="join.do" focus="email" >
    <form:text   property="email" size="30" maxlength="30"/>
    <form:submit property="submit" value="Submit"/>
</form:form>

---------

<form name="joinForm" method="POST"
action="join.do;jsessionid=ndj71hjo01">

    <input type="text" name="email" maxlength="30" size="30"
value="">

    <input type="submit" name="submit" value="Submit">
</form>
<script language="JavaScript">
<!--
    document.joinForm.email.focus()
// -->
</script>

You write:

Browser gets:

The additional JavaScript sets the focus on the email address field. 



4

Struts MVC

Struts MVC



5

implementation
See code downloaded from

http://www-128.ibm.com/developerworks/ibm/library/j-struts/#download

Struts 2
http://struts.apache.org/2.x/docs/core-developers-guide.html



6

Struts 2


