
1

1

Cookies

Cookies: what are they

A Cookie is a small amount of information sent by a

servlet to a Web browser, saved by the browser, and
later sent back to the server.

A cookie's value can uniquely identify a client, so
cookies are commonly used for session management.

A cookie has a name, a single value, and optional
attributes such as a comment, path and domain
qualifiers, a maximum age, and a version number.

Some Web browsers have bugs in how they handle the
optional attributes, so use them sparingly to improve
the interoperability of your servlets.

2

2

Cookies

Cookies affect the caching of the Web pages

that use them. HTTP 1.0 does not cache pages
that use cookies created with this class.

The Java class “Cookie” does not support the
cache control defined with HTTP 1.1. This class
supports both the Version 0 (by Netscape) and
Version 1 (by RFC 2109) cookie specifications.
By default, cookies are created using Version 0
to ensure the best interoperability

Cookies: why?

To maintain status across a “user session”

To maintan infos across sessions

�Customer identification

�Targeted advertisement

�Elimination of username e password

3

3

Attribute summary

String getComment() / void setComment(String s)

Gets/sets a comment associated with this cookie.

String getDomain() / setDomain(String s)

Gets/sets the domain to which cookie applies. Normally, cookies are

returned only to the exact hostname that sent them. You can use this

method to instruct the browser to return them to other hosts within the

same domain. Note that the domain should start with a dot (e.g.

.prenhall.com), and must contain two dots for non-country domains like

.com, .edu, and .gov, and three dots for country domains like .co.uk

and .edu.es.

Attribute summary

int getMaxAge() / void setMaxAge(int i)

Gets/sets how much time (in seconds) should elapse before the

cookie expires. If you don't set this, the cookie will last only for the

current session (i.e. until the user quits the browser), and will not be

stored on disk. See the LongLivedCookie class below, which defines a

subclass of Cookie with a maximum age automatically set one year in

the future.

String getName() / void setName(String s)

Gets/sets the name of the cookie. The name and the value are the two

pieces you virtually always care about. Since the getCookies method of

HttpServletRequest returns an array of Cookie objects, it is common to

loop down this array until you have a particular name, then check the

value with getValue. See the getCookieValue method shown below.

4

4

Attribute summary

String getPath() / void setPath(String s)

Gets/sets the path to which this cookie applies. If you don't specify a

path, the cookie is returned for all URLs in the same directory as the

current page as well as all subdirectories. This method can be used to

specify something more general. For example, someCookie.setPath("/")

specifies that all pages on the server should receive the cookie. Note

that the path specified must include the current directory.

boolean getSecure / setSecure(boolean b)

Gets/sets the boolean value indicating whether the cookie should

only be sent over encrypted (i.e. SSL) connections.

Attribute summary

String getValue() / void setValue(String s)

Gets/sets the value associated with the cookie. Again, the name and the

value are the two parts of a cookie that you almost always care about,

although in a few cases a name is used as a boolean flag, and its value

is ignored (i.e the existence of the name means true).

int getVersion() / void setVersion(int i)

Gets/sets the cookie protocol version this cookie complies with.

Version 0, the default, adheres to the original Netscape specification.

Version 1, not yet widely supported, adheres to RFC 2109.

5

5

Placing Cookies in the Response Headers

The cookie is added to the Set-Cookie response header by means of the

addCookie method of HttpServletResponse. Here's an example:

Cookie userCookie = new Cookie("user", "uid1234");

response.addCookie(userCookie);

Reading Cookies from the Client

To read the cookies that come back from the client, you call getCookies

on the HttpServletRequest. This returns an array of Cookie objects

corresponding to the values that came in on the Cookie HTTP request

header.

Once you have this array, you typically loop down it, calling getName

on each Cookie until you find one matching the name you have in mind.

You then call getValue on the matching Cookie, doing some processing

specific to the resultant value. This is such a common process that the

following section presents a simple getCookieValue method that, given

the array of cookies, a name, and a default value, returns the value of

the cookie matching the name, or, if there is no such cookie, the

designated default value.

6

6

Cookies: examples

Cookie userCookie = new Cookie(“user”,”uid1234”);

userCookie.setMaxAge(60*60*24*365);

response.addCookie(userCookie);

Code to check if the client accepts cookies:

See http://www.purpletech.com/code/src/com/purpletech/servlets/CookieDetector.java

SetCookies

import java.io.*; import javax.servlet.*; import javax.servlet.http.*;

/** Sets six cookies: three that apply only to the current session

* (regardless of how long that session lasts) and three that persist for an hour

* (regardless of whether the browser is restarted).

*/

public class SetCookies extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse
response)

throws ServletException, IOException {

for(int i=0; i<3; i++) {

// Default maxAge is -1, indicating cookie

// applies only to current browsing session.

Cookie cookie = new Cookie("Session-Cookie-" + i,

"Cookie-Value-S" + i);

response.addCookie(cookie);

7

7

cookie = new Cookie("Persistent-Cookie-" + i,"Cookie-Value-P" + i);

// Cookie is valid for an hour, regardless of whether

// user quits browser, reboots computer, or whatever.

cookie.setMaxAge(3600);

response.addCookie(cookie);

}

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Setting Cookies";

out.println (("<HTML><HEAD><TITLE>" +title+ “</TITLE></HEAD>" +

"<BODY BGCOLOR=\"#FDF5E6\">\n" +"<H1 ALIGN=\"CENTER\">"

+ title + "</H1>\n" +"There are six cookies associated with this page.\n" +

"</BODY></HTML>");

}

}

SetCookies

import java.io.*; import javax.servlet.*; import javax.servlet.http.*;

/** Creates a table of the cookies associated with the current page. */

public class ShowCookies extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse
response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Active Cookies";

out.println(("<HTML><HEAD><TITLE>" +title+ “</TITLE></HEAD>" +

"<BODY BGCOLOR=\"#FDF5E6\">\n" +

"<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +

"<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +

"<TR BGCOLOR=\"#FFAD00\">\n" +

" <TH>Cookie Name\n" + " <TH>Cookie Value");

ShowCookies

8

8

Cookie[] cookies = request.getCookies();

Cookie cookie;

for(int i=0; i<cookies.length; i++) {

cookie = cookies[i];

out.println("<TR>\n" +

" <TD>" + cookie.getName() + "\n" +

" <TD>" + cookie.getValue());

}

out.println("</TABLE></BODY></HTML>");

}

}

ShowCookies

Sessions

9

9

String sessionID = makeUniqueString();

Hashtable sessionInfoTable = new Hashtable();

Hashtable globalTable = getTableStoringSession();

globalTable.put(sessionID, sessionInfoTable);

Cookie sessionCookie=new Cookie(“SessionID”,sessionID);

sessionCookie.setPath(“/”);

response.addCookie(sessionCookie);

Session tracking using cookies

globalTable

sessionInfoTable

sessionID

info

key

HttpSession Class

Provides a way to identify a user across more

than one page request or visit to a Web site
and to store information about that user.

The servlet container uses this interface to
create a session between an HTTP client and an
HTTP server. The session persists for a specified
time period, across more than one connection
or page request from the user.

A session usually corresponds to one user, who
may visit a site many times. The server can
maintain a session in many ways such as using
cookies or rewriting URLs.

10

10

HttpSession Class

This interface allows servlets to View and
manipulate information about a session, such
as the session identifier, creation time, and last
accessed time Bind objects to sessions, allowing
user information to persist across multiple user
connections.

When an application stores an object in or
removes an object from a session, the session
checks whether the object implements
HttpSessionBindingListener. If it does, the
servlet notifies the object that it has been
bound to or unbound from the session.

HttpSession session = request.getSession(true);

ShoppingCart cart = (ShoppingCart)session.getValue(“carrello”);
// 2.1

// 2.2 (ShoppingCart)session.getAttribute(“carrello”);

if (cart==null) {

cart=new ShoppingCart();

session.putValue(“carrello”,cart); //2.1

//2.2 session.putValue(“carrello”,cart);

}

doSomeThingWith(cart);

Session tracking API

11

11

public void putValue(String name, Object value); //2.1

public void setAttribute(String name, Object value); //2.2

public void removeValue(String name); //2.1

public void removeAttribute(String name); //2.2

public String[] getValueNames() //2.1

public Enumeration getAttributeNames() //2.2

Session tracking API

public long getCreationTime();

public long getLastAccessdTime();

milliseconds since midnight, 1.1.1970

public int getMaxInactiveInterval();

public void setMaxInactiveInterval(int sec);

public void invalidate();

Session tracking API

12

12

import java.io.*; import javax.servlet.*; import javax.servlet.http.*;

import java.net.*; import java.util.*;

/** Simple example of session tracking. */

public class ShowSession extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse
response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Session Tracking Example";

HttpSession session = request.getSession(true);

String heading;

// Use getAttribute instead of getValue in version 2.2.

Integer accessCount = (Integer)session.getValue("accessCount");

ShowSession

if (accessCount == null) {

accessCount = new Integer(0);

heading = "Welcome Newcomer";

} else {

heading = "Welcome Back";

accessCount = new Integer(accessCount.intValue() + 1);

}

// Use setAttribute instead of putValue in version 2.2.

session.putValue("accessCount", accessCount);

ShowSession

13

13

out.println(("<HTML><HEAD><TITLE>" +title+ “</TITLE></HEAD>" +

"<BODY BGCOLOR=\"#FDF5E6\">\n" +

"<H1 ALIGN=\"CENTER\">" + heading + "</H1>\n" +

"<H2>Information on Your Session:</H2>\n" +

"<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +

"<TR BGCOLOR=\"#FFAD00\">\n" +

" <TH>Info Type<TH>Value\n" +

"<TR>\n" +" <TD>ID\n" +" <TD>" + session.getId() + "\n" +

"<TR>\n" +" <TD>Creation Time\n" +

" <TD>" + new Date(session.getCreationTime()) + "\n" +

"<TR>\n" +" <TD>Time of Last Access\n" +

" <TD>" +new Date(session.getLastAccessedTime()) + "\n" +

"<TR>\n" +" <TD>Number of Previous Accesses\n" +" <TD>" +

accessCount + "\n" + "</TABLE>\n" +"</BODY></HTML>");

}

ShowSession

/** Handle GET and POST requests identically. */

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

doGet(request, response);

}

}

ShowSession

