Cookies

Cookies: what are they

A Cookie is a small amount of information sent by a

servlet to a Web browser, saved by the browser, and
later sent back to the server.

A cookie's value can uniquely identify a client, so
cookies are commonly used for session management.

A cookie has a name, a single value, and optional
attributes such as a comment, path and domain
qualifiers, a maximum age, and a version humber.
Some Web browsers have bugs in how they handle the

optional attributes, so use them sparingly to improve
the interoperability of your servlets.

Cookies

Cookies affect the caching of the Web pages
that use them. HTTP 1.0 does not cache pages
that use cookies created with this class.

The Java class “Cookie” does not support the
cache control defined with HTTP 1.1. This class
supports both the Version 0 (by Netscape) and
Version 1 (by RFC 2109) cookie specifications.
By default, cookies are created using Version 0
to ensure the best interoperability

Cookies: why?

To maintain status across a “user session”

To maintan infos across sessions
Customer identification
Targeted advertisement
Elimination of username e password

Attribute summary

String getComment() / void setComment(String s)
Gets/sets a comment associated with this cookie.

String getDomain() / setDomain(String s)

Gets/sets the domain to which cookie applies. Normally, cookies are
returned only to the exact hostname that sent them. You can use this
method to instruct the browser to return them to other hosts within the
same domain. Note that the domain should start with a dot (e.g.
.prenhall.com), and must contain two dots for non-country domains like
.com, .edu, and .gov, and three dots for country domains like .co.uk
and .edu.es.

Attribute summary

int getMaxAge() / void setMaxAge(int i)

Gets/sets how much time (in seconds) should elapse before the
cookie expires. If you don't set this, the cookie will last only for the
current session (i.e. until the user quits the browser), and will not be
stored on disk. See the LongLivedCookie class below, which defines a
subclass of Cookie with a maximum age automatically set one year in
the future.

String getName() / void setName(String s)

Gets/sets the name of the cookie. The name and the value are the two
pieces you virtually always care about. Since the getCookies method of
HttpServletRequest returns an array of Cookie objects, it is common to
loop down this array until you have a particular name, then check the
value with getValue. See the getCookieValue method shown below.

Attribute summary

String getPath() / void setPath(String s)

Gets/sets the path to which this cookie applies. If you don't specify a
path, the cookie is returned for all URLs in the same directory as the
current page as well as all subdirectories. This method can be used to
specify something more general. For example, someCookie.setPath("/")
specifies that all pages on the server should receive the cookie. Note
that the path specified must include the current directory.

boolean getSecure / setSecure(boolean b)

Gets/sets the boolean value indicating whether the cookie should
only be sent over encrypted (i.e. SSL) connections.

Attribute summary

String getValue() / void setValue(String s)

Gets/sets the value associated with the cookie. Again, the name and the
value are the two parts of a cookie that you almost always care about,
although in a few cases a hame is used as a boolean flag, and its value
is ignored (i.e the existence of the name means true).

int getVersion() / void setVersion(int i)

Gets/sets the cookie protocol version this cookie complies with.
Version 0, the default, adheres to the original Netscape specification.
Version 1, not yet widely supported, adheres to RFC 2109.

Placing Cookies in the Response Headers

The cookie is added to the Set-Cookie response header by means of the
addCookie method of HttpServietResponse. Here's an example:

Cookie userCookie = new Cookie("user”, "uid1234");
response.addCookie(userCookie);

Reading Cookies from the Client

To read the cookies that come back from the client, you call getCookies
on the HttpServletRequest. This returns an array of Cookie objects
corresponding to the values that came in on the Cookie HTTP request
header.

Once you have this array, you typically loop down it, calling getName
on each Cookie until you find one matching the name you have in mind.
You then call getValue on the matching Cookie, doing some processing
specific to the resultant value. This is such a common process that the
following section presents a simple getCookieValue method that, given
the array of cookies, a name, and a default value, returns the value of
the cookie matching the name, or, if there is no such cookie, the
designated default value.

Cookies: examples

Cookie userCookie = new Cookie(“user”,”uid1234”);
userCookie.setMaxAge(60*60*24*365);
response.addCookie(userCookie);

Code to check if the client accepts cookies:

See http://www.purpletech.com/code/src/com/purpletech/serviets/CookieDetector.java

SetCookies

import java.io.*; import javax.servlet.*; import javax.servlet.http.*;

/** Sets six cookies: three that apply only to the current session

* (regardless of how long that session lasts) and three that persist for an hour
* (regardless of whether the browser is restarted).

*/

public class SetCookies extends HttpServlet {

public void doGet(HttpServietRequest request, HttpServietResponse
response)

throws ServletException, IOException {
for(int i=0; i<3; i++) {
// Default maxAge is -1, indicating cookie
/I applies only to current browsing session.
Cookie cookie = new Cookie("'Session-Cookie-" + i,
"Cookie-Value-S" + i);
response.addCookie(cookie);

SetCookies

cookie = new Cookie("Persistent-Cookie-" + i,"Cookie-Value-P" + i);
/I Cookie is valid for an hour, regardless of whether
// user quits browser, reboots computer, or whatever.
cookie.setMaxAge(3600);
response.addCookie(cookie);
}
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String title = "Setting Cookies";
out.printin (("<HTML><HEAD><TITLE>" +title+ “</TITLE></HEAD>" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +"<H1 ALIGN=\"CENTER\">"
+ title + "</H1>\n" +"There are six cookies associated with this page.\n" +
"</BODY></HTML>");
}
}

ShowCookies

import java.io.*; import javax.servlet.”; import javax.servlet.http.*;
/** Creates a table of the cookies associated with the current page. */
public class ShowCookies extends HttpServlet {

public void doGet(HttpServietRequest request, HttpServietResponse
response)

throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String title = "Active Cookies";
out.printin(("<HTML><HEAD><TITLE>" +title+ “"</TITLE></HEAD>" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
"<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
"<TR BGCOLOR=\"#FFADOO\">\n" +
" <TH>Cookie Name\n" + " <TH>Cookie Value");

ShowCookies

Cookie[] cookies = request.getCookies();
Cookie cookie;
for(int i=0; i<cookies.length; i++) {
cookie = cookiesil;
out.printin("<TR>\n" +
" <TD>" + cookie.getName() + "\n" +
" <TD>" + cookie.getValue());
}
out.printin("</TABLE></BODY></HTML>");
}
}

Sessions

Session tracking using cookies

String sessionID = makeUniqueString();

Hashtable sessioninfoTable = new Hashtable();

Hashtable globalTable = getTableStoringSession();
globalTable.put(sessionID, sessioninfoTable);

Cookie sessionCookie=new Cookie(“SessionID”,sessionID);
sessionCookie.setPath(“/”);
response.addCookie(sessionCookie);

info

key sessionInfoTable

. globalTable
sessionID

HttpSession Class

Provides a way to identify a user across more
than one page request or visit to a Web site
and to store information about that user.

The servlet container uses this interface to
create a session between an HTTP client and an
HTTP server. The session persists for a specified
time period, across more than one connection
or page request from the user.

A session usually corresponds to one user, who
may visit a site many times. The server can
maintain a session in many ways such as using
cookies or rewriting URLs.

HttpSession Class

This interface allows servlets to View and
manipulate information about a session, such
as the session identifier, creation time, and last
accessed time Bind objects to sessions, allowing
user information to persist across multiple user
connections.

When an application stores an object in or
removes an object from a session, the session
checks whether the object implements
HttpSessionBindingListener. If it does, the
servlet notifies the object that it has been
bound to or unbound from the session.

Session tracking API

HttpSession session = request.getSession(true);

ShoppingCart cart = (ShoppingCart)session.getValue(“carrello”);
//2.1

if (cart==null) {
cart=new ShoppingCart();
session.putValue(“carrello”,cart); /2.1

}
doSomeThingWith(cart);

10

10

Session tracking API

public void putValue(String name, Object value); /2.
public void setAttribute(String name, Object value); //2.2

public void removeValue(String name); //2.1
public void removeAttribute(String name); /2.2

public String[] getValueNames() /2.
public Enumeration getAttributeNames() /2.2

Session tracking API

public long getCreationTime();
public long getLastAccessdTime();
milliseconds since midnight, 1.1.1970

public int getMaxInactivelnterval();
public void setMaxInactivelnterval(int sec);

public void invalidate();

11

11

ShowSession

import java.io.*; import javax.servlet.”; import javax.servlet.http.*;
import java.net.*; import java.util.*;

/** Simple example of session tracking. */

public class ShowSession extends HttpServiet {

public void doGet(HttpServietRequest request, HttpServietResponse

response)
throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();
String title = "Session Tracking Example";
HttpSession session = request.getSession(true);
String heading;
/I Use getAttribute instead of getValue in version 2.2.

Integer accessCount = (Integer)session.getValue("accessCount");

ShowSession

if (accessCount == null) {
accessCount = new Integer(0);
heading = "Welcome Newcomer";
}else {
heading = "Welcome Back™;
accessCount = new Integer(accessCount.intValue() + 1);
}
/I Use setAttribute instead of putValue in version 2.2.
session.putValue("accessCount", accessCount);

12

12

ShowSession

out.printin(("<HTML><HEAD><TITLE>" +title+ “</TITLE></HEAD>" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + heading + "</H1>\n" +
"<H2>Information on Your Session:</H2>\n" +
"<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
"<TR BGCOLOR=\"#FFADO00\">\n" +
" <TH>Info Type<TH>Value\n" +
"<TR>\n" +" <TD>ID\n" +" <TD>" + session.getld() + "\n" +
"<TR>\n" +" <TD>Creation Time\n" +
" <TD>" + new Date(session.getCreationTime()) + "\n" +
"<TR>\n" +" <TD>Time of Last Access\n" +
" <TD>" +new Date(session.getLastAccessedTime()) + "\n" +
"<TR>\n" +" <TD>Number of Previous Accesses\n" +" <TD>" +
accessCount + "\n" + "</TABLE>\n" +"</BODY></HTML>");

ShowSession

/** Handle GET and POST requests identically. */

public void doPost(HttpServletRequest request,
HttpServiletResponse response)
throws ServletException, IOException {
doGet(request, response);
}
}

13

13

